# coding: utf8 from __future__ import unicode_literals import plac import math from tqdm import tqdm import numpy from ast import literal_eval from pathlib import Path from preshed.counter import PreshCounter from ..compat import fix_text from ..vectors import Vectors from ..util import prints, ensure_path, get_lang_class @plac.annotations( lang=("model language", "positional", None, str), output_dir=("model output directory", "positional", None, Path), freqs_loc=("location of words frequencies file", "positional", "f", Path), clusters_loc=("optional: location of brown clusters data", "option", "c", str), vectors_loc=("optional: location of vectors file in GenSim text format", "option", "v", str), prune_vectors=("optional: number of vectors to prune to", "option", "V", int) ) def init_model(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None, prune_vectors=-1): if not freqs_loc.exists(): prints(freqs_loc, title="Can't find words frequencies file", exits=1) clusters_loc = ensure_path(clusters_loc) vectors_loc = ensure_path(vectors_loc) probs, oov_prob = read_freqs(freqs_loc) vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else None clusters = read_clusters(clusters_loc) if clusters_loc else {} nlp = create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) return nlp def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors): print("Creating model...") lang_class = get_lang_class(lang) nlp = lang_class() for lexeme in nlp.vocab: lexeme.rank = 0 lex_added = 0 for i, (word, prob) in enumerate(tqdm(sorted(probs.items(), key=lambda item: item[1], reverse=True))): lexeme = nlp.vocab[word] lexeme.rank = i lexeme.prob = prob lexeme.is_oov = False # Decode as a little-endian string, so that we can do & 15 to get # the first 4 bits. See _parse_features.pyx if word in clusters: lexeme.cluster = int(clusters[word][::-1], 2) else: lexeme.cluster = 0 lex_added += 1 nlp.vocab.cfg.update({'oov_prob': oov_prob}) if len(vectors_data): nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) if prune_vectors >= 1: nlp.vocab.prune_vectors(prune_vectors) vec_added = len(nlp.vocab.vectors) prints("{} entries, {} vectors".format(lex_added, vec_added), title="Sucessfully compiled vocab") return nlp def read_vectors(vectors_loc): print("Reading vectors...") with vectors_loc.open() as f: shape = tuple(int(size) for size in f.readline().split()) vectors_data = numpy.zeros(shape=shape, dtype='f') vectors_keys = [] for i, line in enumerate(tqdm(f)): pieces = line.split() word = pieces.pop(0) vectors_data[i] = numpy.array([float(val_str) for val_str in pieces], dtype='f') vectors_keys.append(word) return vectors_data, vectors_keys def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50): print("Counting frequencies...") counts = PreshCounter() total = 0 with freqs_loc.open() as f: for i, line in enumerate(f): freq, doc_freq, key = line.rstrip().split('\t', 2) freq = int(freq) counts.inc(i + 1, freq) total += freq counts.smooth() log_total = math.log(total) probs = {} with freqs_loc.open() as f: for line in tqdm(f): freq, doc_freq, key = line.rstrip().split('\t', 2) doc_freq = int(doc_freq) freq = int(freq) if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length: word = literal_eval(key) smooth_count = counts.smoother(int(freq)) probs[word] = math.log(smooth_count) - log_total oov_prob = math.log(counts.smoother(0)) - log_total return probs, oov_prob def read_clusters(clusters_loc): print("Reading clusters...") clusters = {} with clusters_loc.open() as f: for line in tqdm(f): try: cluster, word, freq = line.split() word = fix_text(word) except ValueError: continue # If the clusterer has only seen the word a few times, its # cluster is unreliable. if int(freq) >= 3: clusters[word] = cluster else: clusters[word] = '0' # Expand clusters with re-casing for word, cluster in list(clusters.items()): if word.lower() not in clusters: clusters[word.lower()] = cluster if word.title() not in clusters: clusters[word.title()] = cluster if word.upper() not in clusters: clusters[word.upper()] = cluster return clusters