import plac import tqdm from pathlib import Path import srsly import cProfile import pstats import sys import itertools import thinc.extra.datasets from wasabi import msg from ..util import load_model @plac.annotations( model=("Model to load", "positional", None, str), inputs=("Location of input file. '-' for stdin.", "positional", None, str), n_texts=("Maximum number of texts to use if available", "option", "n", int), ) def profile(model, inputs=None, n_texts=10000): """ Profile a spaCy pipeline, to find out which functions take the most time. Input should be formatted as one JSON object per line with a key "text". It can either be provided as a JSONL file, or be read from sys.sytdin. If no input file is specified, the IMDB dataset is loaded via Thinc. """ if inputs is not None: inputs = _read_inputs(inputs, msg) if inputs is None: n_inputs = 25000 with msg.loading("Loading IMDB dataset via Thinc..."): imdb_train, _ = thinc.extra.datasets.imdb() inputs, _ = zip(*imdb_train) msg.info(f"Loaded IMDB dataset and using {n_inputs} examples") inputs = inputs[:n_inputs] with msg.loading(f"Loading model '{model}'..."): nlp = load_model(model) msg.good(f"Loaded model '{model}'") texts = list(itertools.islice(inputs, n_texts)) cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof") s = pstats.Stats("Profile.prof") msg.divider("Profile stats") s.strip_dirs().sort_stats("time").print_stats() def parse_texts(nlp, texts): for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16): pass def _read_inputs(loc, msg): if loc == "-": msg.info("Reading input from sys.stdin") file_ = sys.stdin file_ = (line.encode("utf8") for line in file_) else: input_path = Path(loc) if not input_path.exists() or not input_path.is_file(): msg.fail("Not a valid input data file", loc, exits=1) msg.info(f"Using data from {input_path.parts[-1]}") file_ = input_path.open() for line in file_: data = srsly.json_loads(line) text = data["text"] yield text