# cython: profile=True # coding: utf8 from __future__ import unicode_literals, print_function import io import re import ujson from pathlib import Path from .syntax import nonproj def tags_to_entities(tags): entities = [] start = None for i, tag in enumerate(tags): if tag is None: continue if tag.startswith('O'): # TODO: We shouldn't be getting these malformed inputs. Fix this. if start is not None: start = None continue elif tag == '-': continue elif tag.startswith('I'): assert start is not None, tags[:i] continue if tag.startswith('U'): entities.append((tag[2:], i, i)) elif tag.startswith('B'): start = i elif tag.startswith('L'): entities.append((tag[2:], start, i)) start = None else: raise Exception(tag) return entities def merge_sents(sents): m_deps = [[], [], [], [], [], []] m_brackets = [] i = 0 for (ids, words, tags, heads, labels, ner), brackets in sents: m_deps[0].extend(id_ + i for id_ in ids) m_deps[1].extend(words) m_deps[2].extend(tags) m_deps[3].extend(head + i for head in heads) m_deps[4].extend(labels) m_deps[5].extend(ner) m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets) i += len(ids) return [(m_deps, m_brackets)] def align(cand_words, gold_words): cost, edit_path = _min_edit_path(cand_words, gold_words) alignment = [] i_of_gold = 0 for move in edit_path: if move == 'M': alignment.append(i_of_gold) i_of_gold += 1 elif move == 'S': alignment.append(None) i_of_gold += 1 elif move == 'D': alignment.append(None) elif move == 'I': i_of_gold += 1 else: raise Exception(move) return alignment punct_re = re.compile(r'\W') def _min_edit_path(cand_words, gold_words): cdef: Pool mem int i, j, n_cand, n_gold int* curr_costs int* prev_costs # TODO: Fix this --- just do it properly, make the full edit matrix and # then walk back over it... # Preprocess inputs cand_words = [punct_re.sub('', w) for w in cand_words] gold_words = [punct_re.sub('', w) for w in gold_words] if cand_words == gold_words: return 0, ''.join(['M' for _ in gold_words]) mem = Pool() n_cand = len(cand_words) n_gold = len(gold_words) # Levenshtein distance, except we need the history, and we may want different # costs. # Mark operations with a string, and score the history using _edit_cost. previous_row = [] prev_costs = mem.alloc(n_gold + 1, sizeof(int)) curr_costs = mem.alloc(n_gold + 1, sizeof(int)) for i in range(n_gold + 1): cell = '' for j in range(i): cell += 'I' previous_row.append('I' * i) prev_costs[i] = i for i, cand in enumerate(cand_words): current_row = ['D' * (i + 1)] curr_costs[0] = i+1 for j, gold in enumerate(gold_words): if gold.lower() == cand.lower(): s_cost = prev_costs[j] i_cost = curr_costs[j] + 1 d_cost = prev_costs[j + 1] + 1 else: s_cost = prev_costs[j] + 1 i_cost = curr_costs[j] + 1 d_cost = prev_costs[j + 1] + (1 if cand else 0) if s_cost <= i_cost and s_cost <= d_cost: best_cost = s_cost best_hist = previous_row[j] + ('M' if gold == cand else 'S') elif i_cost <= s_cost and i_cost <= d_cost: best_cost = i_cost best_hist = current_row[j] + 'I' else: best_cost = d_cost best_hist = previous_row[j + 1] + 'D' current_row.append(best_hist) curr_costs[j+1] = best_cost previous_row = current_row for j in range(len(gold_words) + 1): prev_costs[j] = curr_costs[j] curr_costs[j] = 0 return prev_costs[n_gold], previous_row[-1] def read_json_file(loc, docs_filter=None): if path.isdir(loc): for filename in os.listdir(loc): yield from read_json_file(path.join(loc, filename)) else: with io.open(loc, 'r', encoding='utf8') as file_: docs = json.load(file_) for doc in docs: if docs_filter is not None and not docs_filter(doc): continue paragraphs = [] for paragraph in doc['paragraphs']: sents = [] for sent in paragraph['sentences']: words = [] ids = [] tags = [] heads = [] labels = [] ner = [] for i, token in enumerate(sent['tokens']): words.append(token['orth']) ids.append(i) tags.append(token.get('tag','-')) heads.append(token.get('head',0) + i) labels.append(token.get('dep','')) # Ensure ROOT label is case-insensitive if labels[-1].lower() == 'root': labels[-1] = 'ROOT' ner.append(token.get('ner', '-')) sents.append(( (ids, words, tags, heads, labels, ner), sent.get('brackets', []))) if sents: yield (paragraph.get('raw', None), sents) def _iob_to_biluo(tags): out = [] curr_label = None tags = list(tags) while tags: out.extend(_consume_os(tags)) out.extend(_consume_ent(tags)) return out def _consume_os(tags): while tags and tags[0] == 'O': yield tags.pop(0) def _consume_ent(tags): if not tags: return [] target = tags.pop(0).replace('B', 'I') length = 1 while tags and tags[0] == target: length += 1 tags.pop(0) label = target[2:] if length == 1: return ['U-' + label] else: start = 'B-' + label end = 'L-' + label middle = ['I-%s' % label for _ in range(1, length - 1)] return [start] + middle + [end] cdef class GoldParse: """Collection for training annotations.""" @classmethod def from_annot_tuples(cls, doc, annot_tuples, make_projective=False): _, words, tags, heads, deps, entities = annot_tuples return cls(doc, words=words, tags=tags, heads=heads, deps=deps, entities=entities, make_projective=make_projective) def __init__(self, doc, annot_tuples=None, words=None, tags=None, heads=None, deps=None, entities=None, make_projective=False): """ Create a GoldParse. Arguments: doc (Doc): The document the annotations refer to. words: A sequence of unicode word strings. tags: A sequence of strings, representing tag annotations. heads: A sequence of integers, representing syntactic head offsets. deps: A sequence of strings, representing the syntactic relation types. entities: A sequence of named entity annotations, either as BILUO tag strings, or as (start_char, end_char, label) tuples, representing the entity positions. Returns (GoldParse): The newly constructed object. """ if words is None: words = [token.text for token in doc] if tags is None: tags = [None for _ in doc] if heads is None: heads = [token.i for token in doc] if deps is None: deps = [None for _ in doc] if entities is None: entities = ['-' for _ in doc] elif len(entities) == 0: entities = ['O' for _ in doc] elif not isinstance(entities[0], basestring): # Assume we have entities specified by character offset. entities = biluo_tags_from_offsets(doc, entities) self.mem = Pool() self.loss = 0 self.length = len(doc) # These are filled by the tagger/parser/entity recogniser self.c.tags = self.mem.alloc(len(doc), sizeof(int)) self.c.heads = self.mem.alloc(len(doc), sizeof(int)) self.c.labels = self.mem.alloc(len(doc), sizeof(int)) self.c.ner = self.mem.alloc(len(doc), sizeof(Transition)) self.words = [None] * len(doc) self.tags = [None] * len(doc) self.heads = [None] * len(doc) self.labels = [None] * len(doc) self.ner = [None] * len(doc) self.cand_to_gold = align([t.orth_ for t in doc], words) self.gold_to_cand = align(words, [t.orth_ for t in doc]) annot_tuples = (range(len(words)), words, tags, heads, deps, entities) self.orig_annot = list(zip(*annot_tuples)) for i, gold_i in enumerate(self.cand_to_gold): if doc[i].text.isspace(): self.words[i] = doc[i].text self.tags[i] = 'SP' self.heads[i] = None self.labels[i] = None self.ner[i] = 'O' if gold_i is None: pass else: self.words[i] = words[gold_i] self.tags[i] = tags[gold_i] self.heads[i] = self.gold_to_cand[heads[gold_i]] self.labels[i] = deps[gold_i] self.ner[i] = entities[gold_i] cycle = nonproj.contains_cycle(self.heads) if cycle != None: raise Exception("Cycle found: %s" % cycle) if make_projective: proj_heads,_ = nonproj.PseudoProjectivity.projectivize(self.heads, self.labels) self.heads = proj_heads def __len__(self): """ Get the number of gold-standard tokens. Returns (int): The number of gold-standard tokens. """ return self.length @property def is_projective(self): """ Whether the provided syntactic annotations form a projective dependency tree. """ return not nonproj.is_nonproj_tree(self.heads) def biluo_tags_from_offsets(doc, entities): """ Encode labelled spans into per-token tags, using the Begin/In/Last/Unit/Out scheme (biluo). Arguments: doc (Doc): The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. entities (sequence): A sequence of (start, end, label) triples. start and end should be character-offset integers denoting the slice into the original string. Returns: tags (list): A list of unicode strings, describing the tags. Each tag string will be of the form either "", "O" or "{action}-{label}", where action is one of "B", "I", "L", "U". The string "-" is used where the entity offsets don't align with the tokenization in the Doc object. The training algorithm will view these as missing values. "O" denotes a non-entity token. "B" denotes the beginning of a multi-token entity, "I" the inside of an entity of three or more tokens, and "L" the end of an entity of two or more tokens. "U" denotes a single-token entity. Example: text = 'I like London.' entities = [(len('I like '), len('I like London'), 'LOC')] doc = nlp.tokenizer(text) tags = biluo_tags_from_offsets(doc, entities) assert tags == ['O', 'O', 'U-LOC', 'O'] """ starts = {token.idx: token.i for token in doc} ends = {token.idx+len(token): token.i for token in doc} biluo = ['-' for _ in doc] # Handle entity cases for start_char, end_char, label in entities: start_token = starts.get(start_char) end_token = ends.get(end_char) # Only interested if the tokenization is correct if start_token is not None and end_token is not None: if start_token == end_token: biluo[start_token] = 'U-%s' % label else: biluo[start_token] = 'B-%s' % label for i in range(start_token+1, end_token): biluo[i] = 'I-%s' % label biluo[end_token] = 'L-%s' % label # Now distinguish the O cases from ones where we miss the tokenization entity_chars = set() for start_char, end_char, label in entities: for i in range(start_char, end_char): entity_chars.add(i) for token in doc: for i in range(token.idx, token.idx+len(token)): if i in entity_chars: break else: biluo[token.i] = 'O' return biluo def is_punct_label(label): return label == 'P' or label.lower() == 'punct'