# cython: infer_types=True, profile=True, binding=True import numpy import srsly from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config import warnings from ..tokens.doc cimport Doc from ..morphology cimport Morphology from ..vocab cimport Vocab from .pipe import Pipe, deserialize_config from ..language import Language from ..attrs import POS, ID from ..parts_of_speech import X from ..errors import Errors, TempErrors, Warnings from ..scorer import Scorer from .. import util default_model_config = """ [model] @architectures = "spacy.Tagger.v1" [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true dropout = null """ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "tagger", assigns=["token.tag"], default_config={"model": DEFAULT_TAGGER_MODEL, "set_morphology": False}, scores=["tag_acc", "pos_acc"], score_weights={"tag_acc": 0.5, "pos_acc": 0.5}, ) def make_tagger(nlp: Language, name: str, model: Model, set_morphology: bool): return Tagger(nlp.vocab, model, name, set_morphology=set_morphology) class Tagger(Pipe): """Pipeline component for part-of-speech tagging. DOCS: https://spacy.io/api/tagger """ def __init__(self, vocab, model, name="tagger", *, set_morphology=False): self.vocab = vocab self.model = model self.name = name self._rehearsal_model = None cfg = {"set_morphology": set_morphology} self.cfg = dict(sorted(cfg.items())) @property def labels(self): return tuple(self.vocab.morphology.tag_names) def __call__(self, doc): tags = self.predict([doc]) self.set_annotations([doc], tags) return doc def pipe(self, stream, batch_size=128): for docs in util.minibatch(stream, size=batch_size): tag_ids = self.predict(docs) self.set_annotations(docs, tag_ids) yield from docs def predict(self, docs): if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. n_labels = len(self.labels) guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs] assert len(guesses) == len(docs) return guesses scores = self.model.predict(docs) assert len(scores) == len(docs), (len(scores), len(docs)) guesses = self._scores2guesses(scores) assert len(guesses) == len(docs) return guesses def _scores2guesses(self, scores): guesses = [] for doc_scores in scores: doc_guesses = doc_scores.argmax(axis=1) if not isinstance(doc_guesses, numpy.ndarray): doc_guesses = doc_guesses.get() guesses.append(doc_guesses) return guesses def set_annotations(self, docs, batch_tag_ids): if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef int idx = 0 cdef Vocab vocab = self.vocab assign_morphology = self.cfg.get("set_morphology", True) for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): # Don't clobber preset POS tags if doc.c[j].tag == 0: if doc.c[j].pos == 0 and assign_morphology: # Don't clobber preset lemmas lemma = doc.c[j].lemma vocab.morphology.assign_tag_id(&doc.c[j], tag_id) if lemma != 0 and lemma != doc.c[j].lex.orth: doc.c[j].lemma = lemma else: doc.c[j].tag = self.vocab.strings[self.labels[tag_id]] idx += 1 doc.is_tagged = True def update(self, examples, *, drop=0., sgd=None, losses=None, set_annotations=False): if losses is None: losses = {} losses.setdefault(self.name, 0.0) try: if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples): # Handle cases where there are no tokens in any docs. return except AttributeError: types = set([type(eg) for eg in examples]) raise TypeError(Errors.E978.format(name="Tagger", method="update", types=types)) set_dropout_rate(self.model, drop) tag_scores, bp_tag_scores = self.model.begin_update( [eg.predicted for eg in examples]) for sc in tag_scores: if self.model.ops.xp.isnan(sc.sum()): raise ValueError("nan value in scores") loss, d_tag_scores = self.get_loss(examples, tag_scores) bp_tag_scores(d_tag_scores) if sgd not in (None, False): self.model.finish_update(sgd) losses[self.name] += loss if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, self._scores2guesses(tag_scores)) return losses def rehearse(self, examples, drop=0., sgd=None, losses=None): """Perform a 'rehearsal' update, where we try to match the output of an initial model. """ try: docs = [eg.predicted for eg in examples] except AttributeError: types = set([type(eg) for eg in examples]) raise TypeError(Errors.E978.format(name="Tagger", method="rehearse", types=types)) if self._rehearsal_model is None: return if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. return set_dropout_rate(self.model, drop) guesses, backprop = self.model.begin_update(docs) target = self._rehearsal_model(examples) gradient = guesses - target backprop(gradient) self.model.finish_update(sgd) if losses is not None: losses.setdefault(self.name, 0.0) losses[self.name] += (gradient**2).sum() def get_loss(self, examples, scores): loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False) truths = [eg.get_aligned("tag", as_string=True) for eg in examples] d_scores, loss = loss_func(scores, truths) if self.model.ops.xp.isnan(loss): raise ValueError("nan value when computing loss") return float(loss), d_scores def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None): lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"] if not any(table in self.vocab.lookups for table in lemma_tables): warnings.warn(Warnings.W022) lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {}) if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS: langs = ", ".join(util.LEXEME_NORM_LANGS) warnings.warn(Warnings.W033.format(model="part-of-speech tagger", langs=langs)) orig_tag_map = dict(self.vocab.morphology.tag_map) new_tag_map = {} for example in get_examples(): try: y = example.y except AttributeError: raise TypeError(Errors.E978.format(name="Tagger", method="begin_training", types=type(example))) for token in y: tag = token.tag_ if tag in orig_tag_map: new_tag_map[tag] = orig_tag_map[tag] else: new_tag_map[tag] = {POS: X} cdef Vocab vocab = self.vocab if new_tag_map: if "_SP" in orig_tag_map: new_tag_map["_SP"] = orig_tag_map["_SP"] vocab.morphology.load_tag_map(new_tag_map) self.set_output(len(self.labels)) doc_sample = [Doc(self.vocab, words=["hello", "world"])] if pipeline is not None: for name, component in pipeline: if component is self: break if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample)) else: doc_sample = [component(doc) for doc in doc_sample] self.model.initialize(X=doc_sample) # Get batch of example docs, example outputs to call begin_training(). # This lets the model infer shapes. util.link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd def add_label(self, label, values=None): if not isinstance(label, str): raise ValueError(Errors.E187) if label in self.labels: return 0 if self.model.has_dim("nO"): # Here's how the model resizing will work, once the # neuron-to-tag mapping is no longer controlled by # the Morphology class, which sorts the tag names. # The sorting makes adding labels difficult. # smaller = self.model._layers[-1] # larger = Softmax(len(self.labels)+1, smaller.nI) # copy_array(larger.W[:smaller.nO], smaller.W) # copy_array(larger.b[:smaller.nO], smaller.b) # self.model._layers[-1] = larger raise ValueError(TempErrors.T003) tag_map = dict(self.vocab.morphology.tag_map) if values is None: values = {POS: "X"} tag_map[label] = values self.vocab.morphology.load_tag_map(tag_map) return 1 def use_params(self, params): with self.model.use_params(params): yield def score(self, examples, **kwargs): scores = {} scores.update(Scorer.score_token_attr(examples, "tag", **kwargs)) scores.update(Scorer.score_token_attr(examples, "pos", **kwargs)) scores.update(Scorer.score_token_attr(examples, "lemma", **kwargs)) return scores def to_bytes(self, exclude=tuple()): serialize = {} serialize["model"] = self.model.to_bytes serialize["vocab"] = self.vocab.to_bytes serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) tag_map = dict(sorted(self.vocab.morphology.tag_map.items())) serialize["tag_map"] = lambda: srsly.msgpack_dumps(tag_map) morph_rules = dict(self.vocab.morphology.exc) serialize["morph_rules"] = lambda: srsly.msgpack_dumps(morph_rules) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, exclude=tuple()): def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) def load_tag_map(b): tag_map = srsly.msgpack_loads(b) self.vocab.morphology.load_tag_map(tag_map) def load_morph_rules(b): morph_rules = srsly.msgpack_loads(b) self.vocab.morphology.load_morph_exceptions(morph_rules) self.vocab.morphology = Morphology(self.vocab.strings, dict(), lemmatizer=self.vocab.morphology.lemmatizer) deserialize = { "vocab": lambda b: self.vocab.from_bytes(b), "tag_map": load_tag_map, "morph_rules": load_morph_rules, "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: load_model(b), } util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, exclude=tuple()): tag_map = dict(sorted(self.vocab.morphology.tag_map.items())) morph_rules = dict(self.vocab.morphology.exc) serialize = { "vocab": lambda p: self.vocab.to_disk(p), "tag_map": lambda p: srsly.write_msgpack(p, tag_map), "morph_rules": lambda p: srsly.write_msgpack(p, morph_rules), "model": lambda p: self.model.to_disk(p), "cfg": lambda p: srsly.write_json(p, self.cfg), } util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude=tuple()): def load_model(p): with p.open("rb") as file_: try: self.model.from_bytes(file_.read()) except AttributeError: raise ValueError(Errors.E149) def load_tag_map(p): tag_map = srsly.read_msgpack(p) self.vocab.morphology.load_tag_map(tag_map) def load_morph_rules(p): morph_rules = srsly.read_msgpack(p) self.vocab.morphology.load_morph_exceptions(morph_rules) self.vocab.morphology = Morphology(self.vocab.strings, dict(), lemmatizer=self.vocab.morphology.lemmatizer) deserialize = { "vocab": lambda p: self.vocab.from_disk(p), "cfg": lambda p: self.cfg.update(deserialize_config(p)), "tag_map": load_tag_map, "morph_rules": load_morph_rules, "model": load_model, } util.from_disk(path, deserialize, exclude) return self