# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON from ...errors import Errors def noun_chunks(obj): """ Detect base noun phrases. Works on both Doc and Span. """ # It follows the logic of the noun chunks finder of English language, # adjusted to some Greek language special characteristics. # obj tag corrects some DEP tagger mistakes. # Further improvement of the models will eliminate the need for this tag. labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"] doc = obj.doc # Ensure works on both Doc and Span. if not doc.is_parsed: raise ValueError(Errors.E029) np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") nmod = doc.vocab.strings.add("nmod") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: flag = False if word.pos == NOUN: # check for patterns such as γραμμή παραγωγής for potential_nmod in word.rights: if potential_nmod.dep == nmod: w_range = range(word.left_edge.i, potential_nmod.i + 1) if any(j in seen for j in w_range): continue seen.update(j for j in w_range) yield word.left_edge.i, potential_nmod.i + 1, np_label flag = True break if flag is False: seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label elif word.dep == conj: # covers the case: έχει όμορφα και έξυπνα παιδιά head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: w_range = range(word.left_edge.i, word.i + 1) if any(j in seen for j in w_range): continue seen.update(j for j in w_range) yield word.left_edge.i, word.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}