# coding: utf8 from __future__ import unicode_literals, division, print_function import json from collections import defaultdict import cytoolz from pathlib import Path import dill import tqdm from thinc.neural.optimizers import linear_decay from ..tokens.doc import Doc from ..scorer import Scorer from ..gold import GoldParse, merge_sents from ..gold import GoldCorpus from ..util import prints from .. import util from .. import displacy def train(lang_id, output_dir, train_data, dev_data, n_iter, n_sents, use_gpu, no_tagger, no_parser, no_entities): output_path = util.ensure_path(output_dir) train_path = util.ensure_path(train_data) dev_path = util.ensure_path(dev_data) if not output_path.exists(): prints(output_path, title="Output directory not found", exits=True) if not train_path.exists(): prints(train_path, title="Training data not found", exits=True) if dev_path and not dev_path.exists(): prints(dev_path, title="Development data not found", exits=True) lang_class = util.get_lang_class(lang_id) pipeline = ['token_vectors', 'tags', 'dependencies', 'entities'] if no_tagger and 'tags' in pipeline: pipeline.remove('tags') if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies') if no_entities and 'entities' in pipeline: pipeline.remove('entities') nlp = lang_class(pipeline=pipeline) corpus = GoldCorpus(train_path, dev_path) dropout = util.env_opt('dropout', 0.0) dropout_decay = util.env_opt('dropout_decay', 0.0) optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu) n_train_docs = corpus.count_train() batch_size = float(util.env_opt('min_batch_size', 4)) max_batch_size = util.env_opt('max_batch_size', 64) batch_accel = util.env_opt('batch_accel', 1.001) print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %") for i in range(n_iter): with tqdm.tqdm(total=n_train_docs) as pbar: train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True) idx = 0 while idx < n_train_docs: batch = list(cytoolz.take(int(batch_size), train_docs)) if not batch: break docs, golds = zip(*batch) nlp.update(docs, golds, drop=dropout, sgd=optimizer) pbar.update(len(docs)) idx += len(docs) batch_size *= batch_accel batch_size = min(int(batch_size), max_batch_size) dropout = linear_decay(dropout, dropout_decay, i*n_train_docs+idx) with nlp.use_params(optimizer.averages): scorer = nlp.evaluate(corpus.dev_docs(nlp)) print_progress(i, {}, scorer.scores) with (output_path / 'model.bin').open('wb') as file_: with nlp.use_params(optimizer.averages): dill.dump(nlp, file_, -1) def _render_parses(i, to_render): to_render[0].user_data['title'] = "Batch %d" % i with Path('/tmp/entities.html').open('w') as file_: html = displacy.render(to_render[:5], style='ent', page=True) file_.write(html) with Path('/tmp/parses.html').open('w') as file_: html = displacy.render(to_render[:5], style='dep', page=True) file_.write(html) def evaluate(Language, gold_tuples, path): with (path / 'model.bin').open('rb') as file_: nlp = dill.load(file_) # TODO: # 1. This code is duplicate with spacy.train.Trainer.evaluate # 2. There's currently a semantic difference between pipe and # not pipe! It matters whether we batch the inputs. Must fix! all_docs = [] all_golds = [] for raw_text, paragraph_tuples in dev_sents: if gold_preproc: raw_text = None else: paragraph_tuples = merge_sents(paragraph_tuples) docs = self.make_docs(raw_text, paragraph_tuples) golds = self.make_golds(docs, paragraph_tuples) all_docs.extend(docs) all_golds.extend(golds) scorer = Scorer() for doc, gold in zip(self.nlp.pipe(all_docs), all_golds): scorer.score(doc, gold) return scorer def print_progress(itn, losses, dev_scores): # TODO: Fix! scores = {} for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']: scores[col] = 0.0 scores.update(losses) scores.update(dev_scores) tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' print(tpl.format(itn, **scores)) def print_results(scorer): results = { 'TOK': '%.2f' % scorer.token_acc, 'POS': '%.2f' % scorer.tags_acc, 'UAS': '%.2f' % scorer.uas, 'LAS': '%.2f' % scorer.las, 'NER P': '%.2f' % scorer.ents_p, 'NER R': '%.2f' % scorer.ents_r, 'NER F': '%.2f' % scorer.ents_f} util.print_table(results, title="Results")