#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals from __future__ import print_function import os from os import path import shutil import io import random import plac import re import spacy.util from spacy.en import English from spacy.de import German from spacy.syntax.util import Config from spacy.gold import read_json_file from spacy.gold import GoldParse from spacy.scorer import Scorer from spacy.syntax.arc_eager import ArcEager from spacy.syntax.ner import BiluoPushDown from spacy.tagger import Tagger from spacy.syntax.parser import Parser from spacy.syntax.nonproj import PseudoProjectivity def _corrupt(c, noise_level): if random.random() >= noise_level: return c elif c == ' ': return '\n' elif c == '\n': return ' ' elif c in ['.', "'", "!", "?"]: return '' else: return c.lower() def add_noise(orig, noise_level): if random.random() >= noise_level: return orig elif type(orig) == list: corrupted = [_corrupt(word, noise_level) for word in orig] corrupted = [w for w in corrupted if w] return corrupted else: return ''.join(_corrupt(c, noise_level) for c in orig) def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False): if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) def _merge_sents(sents): m_deps = [[], [], [], [], [], []] m_brackets = [] i = 0 for (ids, words, tags, heads, labels, ner), brackets in sents: m_deps[0].extend(id_ + i for id_ in ids) m_deps[1].extend(words) m_deps[2].extend(tags) m_deps[3].extend(head + i for head in heads) m_deps[4].extend(labels) m_deps[5].extend(ner) m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets) i += len(ids) return [(m_deps, m_brackets)] def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0, gold_preproc=False, n_sents=0, corruption_level=0, beam_width=1, verbose=False, use_orig_arc_eager=False, pseudoprojective=False): dep_model_dir = path.join(model_dir, 'deps') ner_model_dir = path.join(model_dir, 'ner') pos_model_dir = path.join(model_dir, 'pos') if path.exists(dep_model_dir): shutil.rmtree(dep_model_dir) if path.exists(ner_model_dir): shutil.rmtree(ner_model_dir) if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) os.mkdir(dep_model_dir) os.mkdir(ner_model_dir) os.mkdir(pos_model_dir) if pseudoprojective: # preprocess training data here before ArcEager.get_labels() is called gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, labels=ArcEager.get_labels(gold_tuples), beam_width=beam_width,projectivize=pseudoprojective) Config.write(ner_model_dir, 'config', features='ner', seed=seed, labels=BiluoPushDown.get_labels(gold_tuples), beam_width=0) if n_sents > 0: gold_tuples = gold_tuples[:n_sents] nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False) if nlp.lang == 'de': nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string]) nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates()) nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager) nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown) print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %") for itn in range(n_iter): scorer = Scorer() loss = 0 for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, ctnt in sents: if len(annot_tuples[1]) == 1: continue score_model(scorer, nlp, raw_text, annot_tuples, verbose=verbose if itn >= 2 else False) if raw_text is None: words = add_noise(annot_tuples[1], corruption_level) tokens = nlp.tokenizer.tokens_from_list(words) else: raw_text = add_noise(raw_text, corruption_level) tokens = nlp.tokenizer(raw_text) nlp.tagger(tokens) gold = GoldParse(tokens, annot_tuples) if not gold.is_projective: raise Exception("Non-projective sentence in training: %s" % annot_tuples) loss += nlp.parser.train(tokens, gold) nlp.entity.train(tokens, gold) nlp.tagger.train(tokens, gold.tags) random.shuffle(gold_tuples) print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f, scorer.tags_acc, scorer.token_acc)) print('end training') nlp.end_training(model_dir) print('done') def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False, beam_width=None, cand_preproc=None): nlp = Language(data_dir=model_dir) if nlp.lang == 'de': nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string]) if beam_width is not None: nlp.parser.cfg.beam_width = beam_width scorer = Scorer() for raw_text, sents in gold_tuples: if gold_preproc: raw_text = None else: sents = _merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.parser(tokens) nlp.entity(tokens) else: tokens = nlp(raw_text) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) return scorer def write_parses(Language, dev_loc, model_dir, out_loc): nlp = Language(data_dir=model_dir) gold_tuples = read_json_file(dev_loc) scorer = Scorer() out_file = io.open(out_loc, 'w', 'utf8') for raw_text, sents in gold_tuples: sents = _merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) else: tokens = nlp(raw_text) #gold = GoldParse(tokens, annot_tuples) #scorer.score(tokens, gold, verbose=False) for sent in tokens.sents: for t in sent: if not t.is_space: out_file.write( '%d\t%s\t%s\t%s\t%s\n' % (t.i, t.orth_, t.tag_, t.head.orth_, t.dep_) ) out_file.write('\n') @plac.annotations( language=("The language to train", "positional", None, str, ['en','de']), train_loc=("Location of training file or directory"), dev_loc=("Location of development file or directory"), model_dir=("Location of output model directory",), eval_only=("Skip training, and only evaluate", "flag", "e", bool), corruption_level=("Amount of noise to add to training data", "option", "c", float), gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool), out_loc=("Out location", "option", "o", str), n_sents=("Number of training sentences", "option", "n", int), n_iter=("Number of training iterations", "option", "i", int), verbose=("Verbose error reporting", "flag", "v", bool), debug=("Debug mode", "flag", "d", bool), pseudoprojective=("Use pseudo-projective parsing", "flag", "p", bool), ) def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False, debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False, pseudoprojective=False): lang = {'en':English, 'de':German}.get(language) if not eval_only: gold_train = list(read_json_file(train_loc)) train(lang, gold_train, model_dir, feat_set='basic' if not debug else 'debug', gold_preproc=gold_preproc, n_sents=n_sents, corruption_level=corruption_level, n_iter=n_iter, verbose=verbose,pseudoprojective=pseudoprojective) if out_loc: write_parses(lang, dev_loc, model_dir, out_loc) scorer = evaluate(lang, list(read_json_file(dev_loc)), model_dir, gold_preproc=gold_preproc, verbose=verbose) print('TOK', scorer.token_acc) print('POS', scorer.tags_acc) print('UAS', scorer.uas) print('LAS', scorer.las) print('NER P', scorer.ents_p) print('NER R', scorer.ents_r) print('NER F', scorer.ents_f) if __name__ == '__main__': plac.call(main)