# coding: utf8 from __future__ import unicode_literals import numpy from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu from thinc.i2v import HashEmbed, StaticVectors from thinc.t2t import ExtractWindow, ParametricAttention from thinc.t2v import Pooling, sum_pool from thinc.misc import Residual from thinc.misc import LayerNorm as LN from thinc.api import add, layerize, chain, clone, concatenate, with_flatten from thinc.api import FeatureExtracter, with_getitem, flatten_add_lengths from thinc.api import uniqued, wrap, noop from thinc.linear.linear import LinearModel from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.util import get_array_module, copy_array from thinc.neural._lsuv import svd_orthonormal from thinc import describe from thinc.describe import Dimension, Synapses, Biases, Gradient from thinc.neural._classes.affine import _set_dimensions_if_needed import thinc.extra.load_nlp from thinc.neural._lsuv import svd_orthonormal from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE from . import util VECTORS_KEY = 'spacy_pretrained_vectors' def cosine(vec1, vec2): xp = get_array_module(vec1) norm1 = xp.linalg.norm(vec1) norm2 = xp.linalg.norm(vec2) if norm1 == 0. or norm2 == 0.: return 0 else: return vec1.dot(vec2) / (norm1 * norm2) @layerize def _flatten_add_lengths(seqs, pad=0, drop=0.): ops = Model.ops lengths = ops.asarray([len(seq) for seq in seqs], dtype='i') def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths, pad=pad) X = ops.flatten(seqs, pad=pad) return (X, lengths), finish_update @layerize def _logistic(X, drop=0.): xp = get_array_module(X) if not isinstance(X, xp.ndarray): X = xp.asarray(X) # Clip to range (-10, 10) X = xp.minimum(X, 10., X) X = xp.maximum(X, -10., X) Y = 1. / (1. + xp.exp(-X)) def logistic_bwd(dY, sgd=None): dX = dY * (Y * (1-Y)) return dX return Y, logistic_bwd def _zero_init(model): def _zero_init_impl(self, X, y): self.W.fill(0) model.on_data_hooks.append(_zero_init_impl) if model.W is not None: model.W.fill(0.) return model @layerize def _preprocess_doc(docs, drop=0.): keys = [doc.to_array([LOWER]) for doc in docs] ops = Model.ops lengths = ops.asarray([arr.shape[0] for arr in keys]) keys = ops.xp.concatenate(keys) vals = ops.allocate(keys.shape[0]) + 1 return (keys, vals, lengths), None @describe.on_data(_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)) @describe.attributes( nI=Dimension("Input size"), nF=Dimension("Number of features"), nO=Dimension("Output size"), nP=Dimension("Maxout pieces"), W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)), b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)), pad=Synapses("Pad", lambda obj: (1, obj.nF, obj.nO, obj.nP), lambda M, ops: ops.normal_init(M, 1.)), d_W=Gradient("W"), d_pad=Gradient("pad"), d_b=Gradient("b")) class PrecomputableAffine(Model): def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs): Model.__init__(self, **kwargs) self.nO = nO self.nP = nP self.nI = nI self.nF = nF def begin_update(self, X, drop=0.): Yf = self.ops.xp.dot(X, self.W.reshape((self.nF*self.nO*self.nP, self.nI)).T) Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP)) Yf = self._add_padding(Yf) def backward(dY_ids, sgd=None): dY, ids = dY_ids dY, ids = self._backprop_padding(dY, ids) Xf = X[ids] Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI)) self.d_b += dY.sum(axis=0) dY = dY.reshape((dY.shape[0], self.nO*self.nP)) Wopfi = self.W.transpose((1, 2, 0, 3)) Wopfi = self.ops.xp.ascontiguousarray(Wopfi) Wopfi = Wopfi.reshape((self.nO*self.nP, self.nF * self.nI)) dXf = self.ops.dot(dY.reshape((dY.shape[0], self.nO*self.nP)), Wopfi) # Reuse the buffer dWopfi = Wopfi; dWopfi.fill(0.) self.ops.xp.dot(dY.T, Xf, out=dWopfi) dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI)) # (o, p, f, i) --> (f, o, p, i) self.d_W += dWopfi.transpose((2, 0, 1, 3)) if sgd is not None: sgd(self._mem.weights, self._mem.gradient, key=self.id) return dXf.reshape((dXf.shape[0], self.nF, self.nI)) return Yf, backward def _add_padding(self, Yf): Yf_padded = self.ops.xp.vstack((self.pad, Yf)) return Yf_padded def _backprop_padding(self, dY, ids): # (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0 for i in range(ids.shape[0]): for j in range(ids.shape[1]): if ids[i,j] < 0: self.d_pad[0,j] += dY[i, j] return dY, ids @staticmethod def init_weights(model): '''This is like the 'layer sequential unit variance', but instead of taking the actual inputs, we randomly generate whitened data. Why's this all so complicated? We have a huge number of inputs, and the maxout unit makes guessing the dynamics tricky. Instead we set the maxout weights to values that empirically result in whitened outputs given whitened inputs. ''' if (model.W**2).sum() != 0.: return ops = model.ops xp = ops.xp ops.normal_init(model.W, model.nF * model.nI, inplace=True) ids = ops.allocate((5000, model.nF), dtype='f') ids += xp.random.uniform(0, 1000, ids.shape) ids = ops.asarray(ids, dtype='i') tokvecs = ops.allocate((5000, model.nI), dtype='f') tokvecs += xp.random.normal(loc=0., scale=1., size=tokvecs.size).reshape(tokvecs.shape) def predict(ids, tokvecs): # nS ids. nW tokvecs hiddens = model(tokvecs) # (nW, f, o, p) # need nS vectors vectors = model.ops.allocate((ids.shape[0], model.nO, model.nP)) for i, feats in enumerate(ids): for j, id_ in enumerate(feats): vectors[i] += hiddens[id_, j] vectors += model.b if model.nP >= 2: return model.ops.maxout(vectors)[0] else: return vectors * (vectors >= 0) tol_var = 0.01 tol_mean = 0.01 t_max = 10 t_i = 0 for t_i in range(t_max): acts1 = predict(ids, tokvecs) var = model.ops.xp.var(acts1) mean = model.ops.xp.mean(acts1) if abs(var - 1.0) >= tol_var: model.W /= model.ops.xp.sqrt(var) elif abs(mean) >= tol_mean: model.b -= mean else: break def link_vectors_to_models(vocab): vectors = vocab.vectors ops = Model.ops for word in vocab: if word.orth in vectors.key2row: word.rank = vectors.key2row[word.orth] else: word.rank = 0 data = ops.asarray(vectors.data) # Set an entry here, so that vectors are accessed by StaticVectors # (unideal, I know) thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data def Tok2Vec(width, embed_size, **kwargs): pretrained_dims = kwargs.get('pretrained_dims', 0) cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2) cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add, '*': reapply}): norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm') prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix') suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix') shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape') if pretrained_dims is not None and pretrained_dims >= 1: glove = StaticVectors(VECTORS_KEY, width, column=cols.index(ID)) embed = uniqued( (glove | norm | prefix | suffix | shape) >> LN(Maxout(width, width*5, pieces=3)), column=5) else: embed = uniqued( (norm | prefix | suffix | shape) >> LN(Maxout(width, width*4, pieces=3)), column=5) convolution = Residual( ExtractWindow(nW=1) >> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces)) ) tok2vec = ( FeatureExtracter(cols) >> with_flatten( embed >> convolution ** 4, pad=4 ) ) # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width tok2vec.embed = embed return tok2vec def reapply(layer, n_times): def reapply_fwd(X, drop=0.): backprops = [] for i in range(n_times): Y, backprop = layer.begin_update(X, drop=drop) X = Y backprops.append(backprop) def reapply_bwd(dY, sgd=None): dX = None for backprop in reversed(backprops): dY = backprop(dY, sgd=sgd) if dX is None: dX = dY else: dX += dY return dX return Y, reapply_bwd return wrap(reapply_fwd, layer) def asarray(ops, dtype): def forward(X, drop=0.): return ops.asarray(X, dtype=dtype), None return layerize(forward) def _divide_array(X, size): parts = [] index = 0 while index < len(X): parts.append(X[index:index + size]) index += size return parts def get_col(idx): assert idx >= 0, idx def forward(X, drop=0.): assert idx >= 0, idx if isinstance(X, numpy.ndarray): ops = NumpyOps() else: ops = CupyOps() output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype) def backward(y, sgd=None): assert idx >= 0, idx dX = ops.allocate(X.shape) dX[:, idx] += y return dX return output, backward return layerize(forward) def doc2feats(cols=None): if cols is None: cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] def forward(docs, drop=0.): feats = [] for doc in docs: feats.append(doc.to_array(cols)) return feats, None model = layerize(forward) model.cols = cols return model def print_shape(prefix): def forward(X, drop=0.): return X, lambda dX, **kwargs: dX return layerize(forward) @layerize def get_token_vectors(tokens_attrs_vectors, drop=0.): tokens, attrs, vectors = tokens_attrs_vectors def backward(d_output, sgd=None): return (tokens, d_output) return vectors, backward @layerize def logistic(X, drop=0.): xp = get_array_module(X) if not isinstance(X, xp.ndarray): X = xp.asarray(X) # Clip to range (-10, 10) X = xp.minimum(X, 10., X) X = xp.maximum(X, -10., X) Y = 1. / (1. + xp.exp(-X)) def logistic_bwd(dY, sgd=None): dX = dY * (Y * (1-Y)) return dX return Y, logistic_bwd def zero_init(model): def _zero_init_impl(self, X, y): self.W.fill(0) model.on_data_hooks.append(_zero_init_impl) return model @layerize def preprocess_doc(docs, drop=0.): keys = [doc.to_array([LOWER]) for doc in docs] ops = Model.ops lengths = ops.asarray([arr.shape[0] for arr in keys]) keys = ops.xp.concatenate(keys) vals = ops.allocate(keys.shape[0]) + 1 return (keys, vals, lengths), None def getitem(i): def getitem_fwd(X, drop=0.): return X[i], None return layerize(getitem_fwd) def build_tagger_model(nr_class, **cfg): embed_size = util.env_opt('embed_size', 7000) if 'token_vector_width' in cfg: token_vector_width = cfg['token_vector_width'] else: token_vector_width = util.env_opt('token_vector_width', 128) pretrained_dims = cfg.get('pretrained_dims', 0) with Model.define_operators({'>>': chain, '+': add}): if 'tok2vec' in cfg: tok2vec = cfg['tok2vec'] else: tok2vec = Tok2Vec(token_vector_width, embed_size, pretrained_dims=pretrained_dims) softmax = with_flatten(Softmax(nr_class, token_vector_width)) model = ( tok2vec >> softmax ) model.nI = None model.tok2vec = tok2vec model.softmax return model @layerize def SpacyVectors(docs, drop=0.): batch = [] for doc in docs: indices = numpy.zeros((len(doc),), dtype='i') for i, word in enumerate(doc): if word.orth in doc.vocab.vectors.key2row: indices[i] = doc.vocab.vectors.key2row[word.orth] else: indices[i] = 0 vectors = doc.vocab.vectors.data[indices] batch.append(vectors) return batch, None def build_text_classifier(nr_class, width=64, **cfg): nr_vector = cfg.get('nr_vector', 5000) pretrained_dims = cfg.get('pretrained_dims', 0) with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}): if cfg.get('low_data') and pretrained_dims: model = ( SpacyVectors >> flatten_add_lengths >> with_getitem(0, Affine(width, pretrained_dims)) >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual(ReLu(width, width)) ** 2 >> zero_init(Affine(nr_class, width, drop_factor=0.0)) >> logistic ) return model lower = HashEmbed(width, nr_vector, column=1) prefix = HashEmbed(width//2, nr_vector, column=2) suffix = HashEmbed(width//2, nr_vector, column=3) shape = HashEmbed(width//2, nr_vector, column=4) trained_vectors = ( FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]) >> with_flatten( uniqued( (lower | prefix | suffix | shape) >> LN(Maxout(width, width+(width//2)*3)), column=0 ) ) ) if pretrained_dims: static_vectors = ( SpacyVectors >> with_flatten(Affine(width, pretrained_dims)) ) # TODO Make concatenate support lists vectors = concatenate_lists(trained_vectors, static_vectors) vectors_width = width*2 else: vectors = trained_vectors vectors_width = width static_vectors = None cnn_model = ( vectors >> with_flatten( LN(Maxout(width, vectors_width)) >> Residual( (ExtractWindow(nW=1) >> LN(Maxout(width, width*3))) ) ** 2, pad=2 ) >> flatten_add_lengths >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual(zero_init(Maxout(width, width))) >> zero_init(Affine(nr_class, width, drop_factor=0.0)) ) linear_model = ( _preprocess_doc >> LinearModel(nr_class, drop_factor=0.) ) model = ( (linear_model | cnn_model) >> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0)) >> logistic ) model.nO = nr_class model.lsuv = False return model @layerize def flatten(seqs, drop=0.): ops = Model.ops lengths = ops.asarray([len(seq) for seq in seqs], dtype='i') def finish_update(d_X, sgd=None): return ops.unflatten(d_X, lengths, pad=0) X = ops.flatten(seqs, pad=0) return X, finish_update def concatenate_lists(*layers, **kwargs): # pragma: no cover """Compose two or more models `f`, `g`, etc, such that their outputs are concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))` """ if not layers: return noop() drop_factor = kwargs.get('drop_factor', 1.0) ops = layers[0].ops layers = [chain(layer, flatten) for layer in layers] concat = concatenate(*layers) def concatenate_lists_fwd(Xs, drop=0.): drop *= drop_factor lengths = ops.asarray([len(X) for X in Xs], dtype='i') flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop) ys = ops.unflatten(flat_y, lengths) def concatenate_lists_bwd(d_ys, sgd=None): return bp_flat_y(ops.flatten(d_ys), sgd=sgd) return ys, concatenate_lists_bwd model = wrap(concatenate_lists_fwd, concat) return model