from __future__ import unicode_literals from libc.stdint cimport int32_t, uint64_t import numpy from collections import OrderedDict import msgpack import msgpack_numpy msgpack_numpy.patch() cimport numpy as np from .typedefs cimport attr_t from .strings cimport StringStore from . import util from .compat import basestring_ cdef class Vectors: '''Store, save and load word vectors.''' cdef public object data cdef readonly StringStore strings cdef public object key2row cdef public object keys cdef public int i def __init__(self, strings, data_or_width): self.strings = StringStore() if isinstance(data_or_width, int): self.data = data = numpy.zeros((len(strings), data_or_width), dtype='f') else: data = data_or_width self.i = 0 self.data = data self.key2row = {} self.keys = np.ndarray((self.data.shape[0],), dtype='uint64') for string in strings: self.add(string) def __reduce__(self): return (Vectors, (self.strings, self.data)) def __getitem__(self, key): if isinstance(key, basestring): key = self.strings[key] i = self.key2row[key] if i is None: raise KeyError(key) else: return self.data[i] def __setitem__(self, key, vector): if isinstance(key, basestring): key = self.strings.add(key) i = self.key2row[key] self.data[i] = vector def __iter__(self): yield from self.data def __len__(self): return self.i def __contains__(self, key): if isinstance(key, basestring_): key = self.strings[key] return key in self.key2row def add(self, key, vector=None): if isinstance(key, basestring_): key = self.strings.add(key) if key not in self.key2row: i = self.i if i >= self.keys.shape[0]: self.keys.resize((self.keys.shape[0]*2,)) self.data.resize((self.data.shape[0]*2, self.data.shape[1])) self.key2row[key] = self.i self.keys[self.i] = key self.i += 1 else: i = self.key2row[key] if vector is not None: self.data[i] = vector return i def items(self): for i, string in enumerate(self.strings): yield string, self.data[i] @property def shape(self): return self.data.shape def most_similar(self, key): raise NotImplementedError def to_disk(self, path, **exclude): serializers = OrderedDict(( ('vectors', lambda p: numpy.save(p.open('wb'), self.data, allow_pickle=False)), ('keys', lambda p: numpy.save(p.open('wb'), self.keys, allow_pickle=False)), )) return util.to_disk(path, serializers, exclude) def from_disk(self, path, **exclude): def load_keys(path): self.keys = numpy.load(path) for i, key in enumerate(self.keys): self.keys[i] = key self.key2row[key] = i def load_vectors(path): self.data = numpy.load(path) serializers = OrderedDict(( ('keys', load_keys), ('vectors', load_vectors), )) util.from_disk(path, serializers, exclude) return self def to_bytes(self, **exclude): def serialize_weights(): if hasattr(self.data, 'to_bytes'): return self.data.to_bytes() else: return msgpack.dumps(self.data) serializers = OrderedDict(( ('keys', lambda: msgpack.dumps(self.keys)), ('vectors', serialize_weights) )) return util.to_bytes(serializers, exclude) def from_bytes(self, data, **exclude): def deserialize_weights(b): if hasattr(self.data, 'from_bytes'): self.data.from_bytes() else: self.data = msgpack.loads(b) def load_keys(keys): self.keys.resize((len(keys),)) for i, key in enumerate(keys): self.keys[i] = key self.key2row[key] = i deserializers = OrderedDict(( ('keys', lambda b: load_keys(msgpack.loads(b))), ('vectors', deserialize_weights) )) util.from_bytes(data, deserializers, exclude) return self