from spacy.errors import AlignmentError from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags from spacy.gold import spans_from_biluo_tags, iob_to_biluo, align from spacy.gold import Corpus, docs_to_json from spacy.gold.example import Example from spacy.gold.converters import json2docs from spacy.lang.en import English from spacy.tokens import Doc, DocBin from spacy.util import get_words_and_spaces, minibatch from thinc.api import compounding import pytest import srsly from .util import make_tempdir from ..gold.augment import make_orth_variants_example @pytest.fixture def doc(): text = "Sarah's sister flew to Silicon Valley via London." tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."] pos = [ "PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT", ] morphs = [ "NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin", "", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "", "NounType=prop|Number=sing", "PunctType=peri", ] # head of '.' is intentionally nonprojective for testing heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5] deps = [ "poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct", ] lemmas = [ "Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", ".", ] biluo_tags = ["U-PERSON", "O", "O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] cats = {"TRAVEL": 1.0, "BAKING": 0.0} nlp = English() doc = nlp(text) for i in range(len(tags)): doc[i].tag_ = tags[i] doc[i].pos_ = pos[i] doc[i].morph_ = morphs[i] doc[i].lemma_ = lemmas[i] doc[i].dep_ = deps[i] doc[i].head = doc[heads[i]] doc.ents = spans_from_biluo_tags(doc, biluo_tags) doc.cats = cats doc.is_tagged = True doc.is_parsed = True return doc @pytest.fixture() def merged_dict(): return { "ids": [1, 2, 3, 4, 5, 6, 7], "words": ["Hi", "there", "everyone", "It", "is", "just", "me"], "spaces": [True, True, True, True, True, True, False], "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"], "sent_starts": [1, 0, 0, 1, 0, 0, 0], } @pytest.fixture def vocab(): nlp = English() return nlp.vocab def test_gold_biluo_U(en_vocab): words = ["I", "flew", "to", "London", "."] spaces = [True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to London"), "LOC")] tags = biluo_tags_from_offsets(doc, entities) assert tags == ["O", "O", "O", "U-LOC", "O"] def test_gold_biluo_BL(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "."] spaces = [True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")] tags = biluo_tags_from_offsets(doc, entities) assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"] def test_gold_biluo_BIL(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] tags = biluo_tags_from_offsets(doc, entities) assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] def test_gold_biluo_overlap(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, True] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [ (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), (len("I flew to "), len("I flew to San Francisco"), "LOC"), ] with pytest.raises(ValueError): biluo_tags_from_offsets(doc, entities) def test_gold_biluo_misalign(en_vocab): words = ["I", "flew", "to", "San", "Francisco", "Valley."] spaces = [True, True, True, True, True, False] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] with pytest.warns(UserWarning): tags = biluo_tags_from_offsets(doc, entities) assert tags == ["O", "O", "O", "-", "-", "-"] def test_example_from_dict_no_ner(en_vocab): words = ["a", "b", "c", "d"] spaces = [True, True, False, True] predicted = Doc(en_vocab, words=words, spaces=spaces) example = Example.from_dict(predicted, {"words": words}) ner_tags = example.get_aligned_ner() assert ner_tags == [None, None, None, None] def test_example_from_dict_some_ner(en_vocab): words = ["a", "b", "c", "d"] spaces = [True, True, False, True] predicted = Doc(en_vocab, words=words, spaces=spaces) example = Example.from_dict( predicted, {"words": words, "entities": ["U-LOC", None, None, None]} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["U-LOC", None, None, None] def test_json2docs_no_ner(en_vocab): data = [ { "id": 1, "paragraphs": [ { "sentences": [ { "tokens": [ {"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."}, { "dep": "nsubj", "head": 1, "tag": "NNP", "orth": "Haag", }, { "dep": "ROOT", "head": 0, "tag": "VBZ", "orth": "plays", }, { "dep": "dobj", "head": -1, "tag": "NNP", "orth": "Elianti", }, {"dep": "punct", "head": -2, "tag": ".", "orth": "."}, ] } ] } ], } ] docs = json2docs(data) assert len(docs) == 1 for doc in docs: assert not doc.is_nered for token in doc: assert token.ent_iob == 0 eg = Example( Doc( doc.vocab, words=[w.text for w in doc], spaces=[bool(w.whitespace_) for w in doc], ), doc, ) ner_tags = eg.get_aligned_ner() assert ner_tags == [None, None, None, None, None] def test_split_sentences(en_vocab): words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"] doc = Doc(en_vocab, words=words) gold_words = [ "I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun", ] sent_starts = [True, False, False, False, False, False, True, False, False, False] example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts}) assert example.text == "I flew to San Francisco Valley had loads of fun " split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "I flew to San Francisco Valley " assert split_examples[1].text == "had loads of fun " words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"] doc = Doc(en_vocab, words=words) gold_words = [ "I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun", ] sent_starts = [True, False, False, False, False, True, False, False] example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts}) assert example.text == "I flew to San Francisco Valley had loads of fun " split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "I flew to San Francisco Valley " assert split_examples[1].text == "had loads of fun " @pytest.mark.xfail(reason="Alignment should be fixed after example refactor") def test_gold_biluo_one_to_many(en_vocab, en_tokenizer): words = ["I", "flew to", "San Francisco Valley", "."] spaces = [True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "U-LOC", "O"] entities = [ (len("I "), len("I flew to"), "ORG"), (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), ] gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "U-ORG", "U-LOC", "O"] entities = [ (len("I "), len("I flew"), "ORG"), (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), ] gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", None, "U-LOC", "O"] def test_gold_biluo_many_to_one(en_vocab, en_tokenizer): words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] spaces = [True, True, True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] gold_words = ["I", "flew to", "San Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] entities = [ (len("I "), len("I flew to"), "ORG"), (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), ] gold_words = ["I", "flew to", "San Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "B-ORG", "L-ORG", "B-LOC", "I-LOC", "L-LOC", "O"] @pytest.mark.xfail(reason="Alignment should be fixed after example refactor") def test_gold_biluo_misaligned(en_vocab, en_tokenizer): words = ["I flew", "to", "San Francisco", "Valley", "."] spaces = [True, True, True, False, False] doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] gold_words = ["I", "flew to", "San", "Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "B-LOC", "L-LOC", "O"] entities = [ (len("I "), len("I flew to"), "ORG"), (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), ] gold_words = ["I", "flew to", "San", "Francisco Valley", "."] example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) ner_tags = example.get_aligned_ner() assert ner_tags == [None, None, "B-LOC", "L-LOC", "O"] def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer): # additional whitespace tokens in GoldParse words words, spaces = get_words_and_spaces( ["I", "flew", "to", "San Francisco", "Valley", "."], "I flew to San Francisco Valley.", ) doc = Doc(en_vocab, words=words, spaces=spaces) entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."] gold_spaces = [True, True, False, True, False, False] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"] def test_gold_biluo_4791(en_vocab, en_tokenizer): doc = en_tokenizer("I'll return the ₹54 amount") gold_words = ["I", "'ll", "return", "the", "₹", "54", "amount"] gold_spaces = [False, True, True, True, False, True, False] entities = [(16, 19, "MONEY")] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"] doc = en_tokenizer("I'll return the $54 amount") gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"] gold_spaces = [False, True, True, True, False, True, False] entities = [(16, 19, "MONEY")] example = Example.from_dict( doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities} ) ner_tags = example.get_aligned_ner() assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"] def test_roundtrip_offsets_biluo_conversion(en_tokenizer): text = "I flew to Silicon Valley via London." biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] offsets = [(10, 24, "LOC"), (29, 35, "GPE")] doc = en_tokenizer(text) biluo_tags_converted = biluo_tags_from_offsets(doc, offsets) assert biluo_tags_converted == biluo_tags offsets_converted = offsets_from_biluo_tags(doc, biluo_tags) offsets_converted = [ent for ent in offsets if ent[2]] assert offsets_converted == offsets def test_biluo_spans(en_tokenizer): doc = en_tokenizer("I flew to Silicon Valley via London.") biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] spans = spans_from_biluo_tags(doc, biluo_tags) spans = [span for span in spans if span.label_] assert len(spans) == 2 assert spans[0].text == "Silicon Valley" assert spans[0].label_ == "LOC" assert spans[1].text == "London" assert spans[1].label_ == "GPE" def test_gold_ner_missing_tags(en_tokenizer): doc = en_tokenizer("I flew to Silicon Valley via London.") biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"] example = Example.from_dict(doc, {"entities": biluo_tags}) assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2] def test_iob_to_biluo(): good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"] good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"] bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"] converted_biluo = iob_to_biluo(good_iob) assert good_biluo == converted_biluo with pytest.raises(ValueError): iob_to_biluo(bad_iob) def test_roundtrip_docs_to_docbin(doc): nlp = English() text = doc.text idx = [t.idx for t in doc] tags = [t.tag_ for t in doc] pos = [t.pos_ for t in doc] morphs = [t.morph_ for t in doc] lemmas = [t.lemma_ for t in doc] deps = [t.dep_ for t in doc] heads = [t.head.i for t in doc] cats = doc.cats ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents] # roundtrip to DocBin with make_tempdir() as tmpdir: json_file = tmpdir / "roundtrip.json" srsly.write_json(json_file, [docs_to_json(doc)]) goldcorpus = Corpus(str(json_file), str(json_file)) output_file = tmpdir / "roundtrip.spacy" data = DocBin(docs=[doc]).to_bytes() with output_file.open("wb") as file_: file_.write(data) goldcorpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file)) reloaded_example = next(goldcorpus.dev_dataset(nlp=nlp)) assert len(doc) == goldcorpus.count_train(nlp) assert text == reloaded_example.reference.text assert idx == [t.idx for t in reloaded_example.reference] assert tags == [t.tag_ for t in reloaded_example.reference] assert pos == [t.pos_ for t in reloaded_example.reference] assert morphs == [t.morph_ for t in reloaded_example.reference] assert lemmas == [t.lemma_ for t in reloaded_example.reference] assert deps == [t.dep_ for t in reloaded_example.reference] assert heads == [t.head.i for t in reloaded_example.reference] assert ents == [ (e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents ] assert "TRAVEL" in reloaded_example.reference.cats assert "BAKING" in reloaded_example.reference.cats assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"] assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"] # Hm, not sure where misalignment check would be handled? In the components too? # I guess that does make sense. A text categorizer doesn't care if it's # misaligned... @pytest.mark.xfail(reason="Outdated") def test_ignore_misaligned(doc): nlp = English() text = doc.text with make_tempdir() as tmpdir: json_file = tmpdir / "test.json" data = [docs_to_json(doc)] data[0]["paragraphs"][0]["raw"] = text.replace("Sarah", "Jane") # write to JSON train dicts srsly.write_json(json_file, data) goldcorpus = Corpus(str(json_file), str(json_file)) with pytest.raises(AlignmentError): train_reloaded_example = next(goldcorpus.train_dataset(nlp)) with make_tempdir() as tmpdir: json_file = tmpdir / "test.json" data = [docs_to_json(doc)] data[0]["paragraphs"][0]["raw"] = text.replace("Sarah", "Jane") # write to JSON train dicts srsly.write_json(json_file, data) goldcorpus = Corpus(str(json_file), str(json_file)) # doesn't raise an AlignmentError, but there is nothing to iterate over # because the only example can't be aligned train_reloaded_example = list( goldcorpus.train_dataset(nlp, ignore_misaligned=True) ) assert len(train_reloaded_example) == 0 # We probably want the orth variant logic back, but this test won't be quite # right -- we need to go from DocBin. def test_make_orth_variants(doc): nlp = English() with make_tempdir() as tmpdir: output_file = tmpdir / "roundtrip.spacy" data = DocBin(docs=[doc]).to_bytes() with output_file.open("wb") as file_: file_.write(data) goldcorpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file)) # due to randomness, test only that this runs with no errors for now train_example = next(goldcorpus.train_dataset(nlp)) make_orth_variants_example(nlp, train_example, orth_variant_level=0.2) @pytest.mark.parametrize( "tokens_a,tokens_b,expected", [ (["a", "b", "c"], ["ab", "c"], (3, [-1, -1, 1], [-1, 2], {0: 0, 1: 0}, {})), ( ["a", "b", '"', "c"], ['ab"', "c"], (4, [-1, -1, -1, 1], [-1, 3], {0: 0, 1: 0, 2: 0}, {}), ), (["a", "bc"], ["ab", "c"], (4, [-1, -1], [-1, -1], {0: 0}, {1: 1})), ( ["ab", "c", "d"], ["a", "b", "cd"], (6, [-1, -1, -1], [-1, -1, -1], {1: 2, 2: 2}, {0: 0, 1: 0}), ), ( ["a", "b", "cd"], ["a", "b", "c", "d"], (3, [0, 1, -1], [0, 1, -1, -1], {}, {2: 2, 3: 2}), ), ([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})), ], ) def test_align(tokens_a, tokens_b, expected): cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b) assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected # check symmetry cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a) assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected def test_goldparse_startswith_space(en_tokenizer): text = " a" doc = en_tokenizer(text) gold_words = ["a"] entities = ["U-DATE"] deps = ["ROOT"] heads = [0] example = Example.from_dict( doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads} ) ner_tags = example.get_aligned_ner() assert ner_tags == [None, "U-DATE"] assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"] def test_gold_constructor(): """Test that the Example constructor works fine""" nlp = English() doc = nlp("This is a sentence") example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}}) assert example.get_aligned("ORTH", as_string=True) == [ "This", "is", "a", "sentence", ] assert example.reference.cats["cat1"] assert not example.reference.cats["cat2"] def test_tuple_format_implicit(): """Test tuple format""" train_data = [ ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}), ( "Spotify steps up Asia expansion", {"entities": [(0, 8, "ORG"), (17, 21, "LOC")]}, ), ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}), ] _train_tuples(train_data) def test_tuple_format_implicit_invalid(): """Test that an error is thrown for an implicit invalid field""" train_data = [ ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}), ( "Spotify steps up Asia expansion", {"entities": [(0, 8, "ORG"), (17, 21, "LOC")]}, ), ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}), ] with pytest.raises(KeyError): _train_tuples(train_data) def _train_tuples(train_data): nlp = English() ner = nlp.create_pipe("ner") ner.add_label("ORG") ner.add_label("LOC") nlp.add_pipe(ner) train_examples = [] for t in train_data: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.begin_training() for i in range(5): losses = {} batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(batch, sgd=optimizer, losses=losses) def test_split_sents(merged_dict): nlp = English() example = Example.from_dict( Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]), merged_dict, ) assert example.text == "Hi there everyone It is just me" split_examples = example.split_sents() assert len(split_examples) == 2 assert split_examples[0].text == "Hi there everyone " assert split_examples[1].text == "It is just me" token_annotation_1 = split_examples[0].to_dict()["token_annotation"] assert token_annotation_1["words"] == ["Hi", "there", "everyone"] assert token_annotation_1["tags"] == ["INTJ", "ADV", "PRON"] assert token_annotation_1["sent_starts"] == [1, 0, 0] token_annotation_2 = split_examples[1].to_dict()["token_annotation"] assert token_annotation_2["words"] == ["It", "is", "just", "me"] assert token_annotation_2["tags"] == ["PRON", "AUX", "ADV", "PRON"] assert token_annotation_2["sent_starts"] == [1, 0, 0, 0]