# coding: utf8 # cython: infer_types=True # cython: bounds_check=False # cython: profile=True from __future__ import unicode_literals cimport cython cimport numpy as np import numpy import numpy.linalg import struct import dill import msgpack from thinc.neural.util import get_array_module, copy_array from libc.string cimport memcpy, memset from libc.math cimport sqrt from .span cimport Span from .token cimport Token from .span cimport Span from .token cimport Token from .printers import parse_tree from ..lexeme cimport Lexeme, EMPTY_LEXEME from ..typedefs cimport attr_t, flags_t from ..attrs import intify_attrs, IDS from ..attrs cimport attr_id_t from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, CLUSTER from ..attrs cimport LENGTH, POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB from ..attrs cimport ENT_TYPE, SENT_START from ..parts_of_speech cimport CCONJ, PUNCT, NOUN, univ_pos_t from ..util import normalize_slice from ..compat import is_config, copy_reg, pickle, basestring_ from .. import about from .. import util from .underscore import Underscore DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil: if feat_name == LEMMA: return token.lemma elif feat_name == POS: return token.pos elif feat_name == TAG: return token.tag elif feat_name == DEP: return token.dep elif feat_name == HEAD: return token.head elif feat_name == SENT_START: return token.sent_start elif feat_name == SPACY: return token.spacy elif feat_name == ENT_IOB: return token.ent_iob elif feat_name == ENT_TYPE: return token.ent_type else: return Lexeme.get_struct_attr(token.lex, feat_name) def _get_chunker(lang): try: cls = util.get_lang_class(lang) except ImportError: return None except KeyError: return None return cls.Defaults.syntax_iterators.get(u'noun_chunks') cdef class Doc: """A sequence of Token objects. Access sentences and named entities, export annotations to numpy arrays, losslessly serialize to compressed binary strings. The `Doc` object holds an array of `TokenC` structs. The Python-level `Token` and `Span` objects are views of this array, i.e. they don't own the data themselves. EXAMPLE: Construction 1 >>> doc = nlp(u'Some text') Construction 2 >>> from spacy.tokens import Doc >>> doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'], spaces=[True, False, False]) """ @classmethod def set_extension(cls, name, default=None, method=None, getter=None, setter=None): nr_defined = sum(t is not None for t in (default, getter, setter, method)) assert nr_defined == 1 Underscore.doc_extensions[name] = (default, method, getter, setter) @classmethod def get_extension(cls, name): return Underscore.doc_extensions.get(name) @classmethod def has_extension(cls, name): return name in Underscore.doc_extensions def __init__(self, Vocab vocab, words=None, spaces=None, user_data=None, orths_and_spaces=None): """Create a Doc object. vocab (Vocab): A vocabulary object, which must match any models you want to use (e.g. tokenizer, parser, entity recognizer). words (list or None): A list of unicode strings to add to the document as words. If `None`, defaults to empty list. spaces (list or None): A list of boolean values, of the same length as words. True means that the word is followed by a space, False means it is not. If `None`, defaults to `[True]*len(words)` user_data (dict or None): Optional extra data to attach to the Doc. RETURNS (Doc): The newly constructed object. """ self.vocab = vocab size = 20 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME data_start[i].l_edge = i data_start[i].r_edge = i self.c = data_start + PADDING self.max_length = size self.length = 0 self.is_tagged = False self.is_parsed = False self.sentiment = 0.0 self.cats = {} self.user_hooks = {} self.user_token_hooks = {} self.user_span_hooks = {} self.tensor = numpy.zeros((0,), dtype='float32') self.user_data = {} if user_data is None else user_data self._vector = None self.noun_chunks_iterator = _get_chunker(self.vocab.lang) cdef unicode orth cdef bint has_space if orths_and_spaces is None and words is not None: if spaces is None: spaces = [True] * len(words) elif len(spaces) != len(words): raise ValueError( "Arguments 'words' and 'spaces' should be sequences of " "the same length, or 'spaces' should be left default at " "None. spaces should be a sequence of booleans, with True " "meaning that the word owns a ' ' character following it.") orths_and_spaces = zip(words, spaces) if orths_and_spaces is not None: for orth_space in orths_and_spaces: if isinstance(orth_space, unicode): orth = orth_space has_space = True elif isinstance(orth_space, bytes): raise ValueError( "orths_and_spaces expects either List(unicode) or " "List((unicode, bool)). " "Got bytes instance: %s" % (str(orth_space))) else: orth, has_space = orth_space # Note that we pass self.mem here --- we have ownership, if LexemeC # must be created. self.push_back( self.vocab.get(self.mem, orth), has_space) # Tough to decide on policy for this. Is an empty doc tagged and parsed? # There's no information we'd like to add to it, so I guess so? if self.length == 0: self.is_tagged = True self.is_parsed = True @property def _(self): return Underscore(Underscore.doc_extensions, self) def __getitem__(self, object i): """Get a `Token` or `Span` object. i (int or tuple) The index of the token, or the slice of the document to get. RETURNS (Token or Span): The token at `doc[i]]`, or the span at `doc[start : end]`. EXAMPLE: >>> doc[i] Get the `Token` object at position `i`, where `i` is an integer. Negative indexing is supported, and follows the usual Python semantics, i.e. `doc[-2]` is `doc[len(doc) - 2]`. >>> doc[start : end]] Get a `Span` object, starting at position `start` and ending at position `end`, where `start` and `end` are token indices. For instance, `doc[2:5]` produces a span consisting of tokens 2, 3 and 4. Stepped slices (e.g. `doc[start : end : step]`) are not supported, as `Span` objects must be contiguous (cannot have gaps). You can use negative indices and open-ended ranges, which have their normal Python semantics. """ if isinstance(i, slice): start, stop = normalize_slice(len(self), i.start, i.stop, i.step) return Span(self, start, stop, label=0) if i < 0: i = self.length + i bounds_check(i, self.length, PADDING) return Token.cinit(self.vocab, &self.c[i], i, self) def __iter__(self): """Iterate over `Token` objects, from which the annotations can be easily accessed. This is the main way of accessing `Token` objects, which are the main way annotations are accessed from Python. If faster- than-Python speeds are required, you can instead access the annotations as a numpy array, or access the underlying C data directly from Cython. EXAMPLE: >>> for token in doc """ cdef int i for i in range(self.length): yield Token.cinit(self.vocab, &self.c[i], i, self) def __len__(self): """The number of tokens in the document. RETURNS (int): The number of tokens in the document. EXAMPLE: >>> len(doc) """ return self.length def __unicode__(self): return u''.join([t.text_with_ws for t in self]) def __bytes__(self): return u''.join([t.text_with_ws for t in self]).encode('utf-8') def __str__(self): if is_config(python3=True): return self.__unicode__() return self.__bytes__() def __repr__(self): return self.__str__() @property def doc(self): return self def char_span(self, int start_idx, int end_idx, label=0, vector=None): """Create a `Span` object from the slice `doc.text[start : end]`. doc (Doc): The parent document. start (int): The index of the first character of the span. end (int): The index of the first character after the span. label (uint64 or string): A label to attach to the Span, e.g. for named entities. vector (ndarray[ndim=1, dtype='float32']): A meaning representation of the span. RETURNS (Span): The newly constructed object. """ if not isinstance(label, int): label = self.vocab.strings.add(label) cdef int start = token_by_start(self.c, self.length, start_idx) if start == -1: return None cdef int end = token_by_end(self.c, self.length, end_idx) if end == -1: return None # Currently we have the token index, we want the range-end index end += 1 cdef Span span = Span(self, start, end, label=label, vector=vector) return span def similarity(self, other): """Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. other (object): The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. RETURNS (float): A scalar similarity score. Higher is more similar. """ if 'similarity' in self.user_hooks: return self.user_hooks['similarity'](self, other) if isinstance(other, (Lexeme, Token)) and self.length == 1: if self.c[0].lex.orth == other.orth: return 1.0 elif isinstance(other, (Span, Doc)): if len(self) == len(other): for i in range(self.length): if self[i].orth != other[i].orth: break else: return 1.0 if self.vector_norm == 0 or other.vector_norm == 0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) property has_vector: """A boolean value indicating whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object. """ def __get__(self): if 'has_vector' in self.user_hooks: return self.user_hooks['has_vector'](self) elif self.vocab.vectors.data.size: return True elif self.tensor.size: return True else: return False property vector: """A real-valued meaning representation. Defaults to an average of the token vectors. RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array representing the document's semantics. """ def __get__(self): if 'vector' in self.user_hooks: return self.user_hooks['vector'](self) if self._vector is not None: return self._vector elif not len(self): self._vector = numpy.zeros((self.vocab.vectors_length,), dtype='f') return self._vector elif self.vocab.vectors.data.size > 0: vector = numpy.zeros((self.vocab.vectors_length,), dtype='f') for token in self.c[:self.length]: vector += self.vocab.get_vector(token.lex.orth) self._vector = vector / len(self) return self._vector elif self.tensor.size > 0: self._vector = self.tensor.mean(axis=0) return self._vector else: return numpy.zeros((self.vocab.vectors_length,), dtype='float32') def __set__(self, value): self._vector = value property vector_norm: """The L2 norm of the document's vector representation. RETURNS (float): The L2 norm of the vector representation. """ def __get__(self): if 'vector_norm' in self.user_hooks: return self.user_hooks['vector_norm'](self) cdef float value cdef double norm = 0 if self._vector_norm is None: norm = 0.0 for value in self.vector: norm += value * value self._vector_norm = sqrt(norm) if norm != 0 else 0 return self._vector_norm def __set__(self, value): self._vector_norm = value property text: """A unicode representation of the document text. RETURNS (unicode): The original verbatim text of the document. """ def __get__(self): return u''.join(t.text_with_ws for t in self) property text_with_ws: """An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. RETURNS (unicode): The original verbatim text of the document. """ def __get__(self): return self.text property ents: """Iterate over the entities in the document. Yields named-entity `Span` objects, if the entity recognizer has been applied to the document. YIELDS (Span): Entities in the document. EXAMPLE: Iterate over the span to get individual Token objects, or access the label: >>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.') >>> ents = list(tokens.ents) >>> assert ents[0].label == 346 >>> assert ents[0].label_ == 'PERSON' >>> assert ents[0].orth_ == 'Best' >>> assert ents[0].text == 'Mr. Best' """ def __get__(self): cdef int i cdef const TokenC* token cdef int start = -1 cdef attr_t label = 0 output = [] for i in range(self.length): token = &self.c[i] if token.ent_iob == 1: assert start != -1 elif token.ent_iob == 2 or token.ent_iob == 0: if start != -1: output.append(Span(self, start, i, label=label)) start = -1 label = 0 elif token.ent_iob == 3: if start != -1: output.append(Span(self, start, i, label=label)) start = i label = token.ent_type if start != -1: output.append(Span(self, start, self.length, label=label)) return tuple(output) def __set__(self, ents): # TODO: # 1. Allow negative matches # 2. Ensure pre-set NERs are not over-written during statistical # prediction # 3. Test basic data-driven ORTH gazetteer # 4. Test more nuanced date and currency regex cdef int i for i in range(self.length): self.c[i].ent_type = 0 # At this point we don't know whether the NER has run over the # Doc. If the ent_iob is missing, leave it missing. if self.c[i].ent_iob != 0: self.c[i].ent_iob = 2 # Means O. Non-O are set from ents. cdef attr_t ent_type cdef int start, end for ent_info in ents: if isinstance(ent_info, Span): ent_id = ent_info.ent_id ent_type = ent_info.label start = ent_info.start end = ent_info.end elif len(ent_info) == 3: ent_type, start, end = ent_info else: ent_id, ent_type, start, end = ent_info if ent_type is None or ent_type < 0: # Mark as O for i in range(start, end): self.c[i].ent_type = 0 self.c[i].ent_iob = 2 else: # Mark (inside) as I for i in range(start, end): self.c[i].ent_type = ent_type self.c[i].ent_iob = 1 # Set start as B self.c[start].ent_iob = 3 property noun_chunks: """Iterate over the base noun phrases in the document. Yields base noun-phrase #[code Span] objects, if the document has been syntactically parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be nested within it – so no NP-level coordination, no prepositional phrases, and no relative clauses. YIELDS (Span): Noun chunks in the document. """ def __get__(self): if not self.is_parsed: raise ValueError( "noun_chunks requires the dependency parse, which " "requires a statistical model to be installed and loaded. " "For more info, see the " "documentation: \n%s\n" % about.__docs_models__) # Accumulate the result before beginning to iterate over it. This # prevents the tokenisation from being changed out from under us # during the iteration. The tricky thing here is that Span accepts # its tokenisation changing, so it's okay once we have the Span # objects. See Issue #375. spans = [] for start, end, label in self.noun_chunks_iterator(self): spans.append(Span(self, start, end, label=label)) for span in spans: yield span property sents: """Iterate over the sentences in the document. Yields sentence `Span` objects. Sentence spans have no label. To improve accuracy on informal texts, spaCy calculates sentence boundaries from the syntactic dependency parse. If the parser is disabled, the `sents` iterator will be unavailable. EXAMPLE: >>> doc = nlp("This is a sentence. Here's another...") >>> assert [s.root.text for s in doc.sents] == ["is", "'s"] """ def __get__(self): if 'sents' in self.user_hooks: yield from self.user_hooks['sents'](self) return cdef int i if not self.is_parsed: for i in range(1, self.length): if self.c[i].sent_start != 0: break else: raise ValueError( "Sentence boundaries unset. You can add the 'sentencizer' " "component to the pipeline with: " "nlp.add_pipe(nlp.create_pipe('sentencizer')) " "Alternatively, add the dependency parser, or set " "sentence boundaries by setting doc[i].sent_start") start = 0 for i in range(1, self.length): if self.c[i].sent_start == 1: yield Span(self, start, i) start = i if start != self.length: yield Span(self, start, self.length) cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1: if self.length == 0: # Flip these to false when we see the first token. self.is_tagged = False self.is_parsed = False if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.c[self.length] if LexemeOrToken is const_TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok if self.length == 0: t.idx = 0 else: t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy t.l_edge = self.length t.r_edge = self.length assert t.lex.orth != 0 t.spacy = has_space self.length += 1 return t.idx + t.lex.length + t.spacy @cython.boundscheck(False) cpdef np.ndarray to_array(self, object py_attr_ids): """Export given token attributes to a numpy `ndarray`. If `attr_ids` is a sequence of M attributes, the output array will be of shape `(N, M)`, where N is the length of the `Doc` (in tokens). If `attr_ids` is a single attribute, the output shape will be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA) or string name (e.g. 'LEMMA' or 'lemma'). attr_ids (list[]): A list of attributes (int IDs or string names). RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input `attr_ids`. EXAMPLE: >>> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA >>> doc = nlp(text) >>> # All strings mapped to integers, for easy export to numpy >>> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA]) """ cdef int i, j cdef attr_id_t feature cdef np.ndarray[attr_t, ndim=2] output # Handle scalar/list inputs of strings/ints for py_attr_ids if not hasattr(py_attr_ids, '__iter__') \ and not isinstance(py_attr_ids, basestring_): py_attr_ids = [py_attr_ids] # Allow strings, e.g. 'lemma' or 'LEMMA' py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, 'upper') else id_) for id_ in py_attr_ids] # Make an array from the attributes --- otherwise our inner loop is # Python dict iteration. cdef np.ndarray attr_ids = numpy.asarray(py_attr_ids, dtype='i') output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.uint64) c_output = output.data c_attr_ids = attr_ids.data cdef TokenC* token cdef int nr_attr = attr_ids.shape[0] for i in range(self.length): token = &self.c[i] for j in range(nr_attr): c_output[i*nr_attr + j] = get_token_attr(token, c_attr_ids[j]) # Handle 1d case return output if len(attr_ids) >= 2 else output.reshape((self.length,)) def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None): """Count the frequencies of a given attribute. Produces a dict of `{attribute (int): count (ints)}` frequencies, keyed by the values of the given attribute ID. attr_id (int): The attribute ID to key the counts. RETURNS (dict): A dictionary mapping attributes to integer counts. EXAMPLE: >>> from spacy import attrs >>> doc = nlp(u'apple apple orange banana') >>> tokens.count_by(attrs.ORTH) {12800L: 1, 11880L: 2, 7561L: 1} >>> tokens.to_array([attrs.ORTH]) array([[11880], [11880], [7561], [12800]]) """ cdef int i cdef attr_t attr cdef size_t count if counts is None: counts = PreshCounter() output_dict = True else: output_dict = False # Take this check out of the loop, for a bit of extra speed if exclude is None: for i in range(self.length): counts.inc(get_token_attr(&self.c[i], attr_id), 1) else: for i in range(self.length): if not exclude(self[i]): attr = get_token_attr(&self.c[i], attr_id) counts.inc(attr, 1) if output_dict: return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.c - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.c = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.c[i].lex = &EMPTY_LEXEME cdef void set_parse(self, const TokenC* parsed) nogil: # TODO: This method is fairly misleading atm. It's used by Parser # to actually apply the parse calculated. Need to rethink this. # Probably we should use from_array? self.is_parsed = True for i in range(self.length): self.c[i] = parsed[i] def from_array(self, attrs, array): if SENT_START in attrs and HEAD in attrs: raise ValueError( "Conflicting attributes specified in doc.from_array(): " "(HEAD, SENT_START)\n" "The HEAD attribute currently sets sentence boundaries " "implicitly, based on the tree structure. This means the HEAD " "attribute would potentially override the sentence boundaries " "set by SENT_START.") cdef int i, col cdef attr_id_t attr_id cdef TokenC* tokens = self.c cdef int length = len(array) # Get set up for fast loading cdef Pool mem = Pool() cdef int n_attrs = len(attrs) attr_ids = mem.alloc(n_attrs, sizeof(attr_id_t)) for i, attr_id in enumerate(attrs): attr_ids[i] = attr_id # Now load the data for i in range(self.length): token = &self.c[i] for j in range(n_attrs): Token.set_struct_attr(token, attr_ids[j], array[i, j]) # Auxiliary loading logic for col, attr_id in enumerate(attrs): if attr_id == TAG: for i in range(length): if array[i, col] != 0: self.vocab.morphology.assign_tag(&tokens[i], array[i, col]) set_children_from_heads(self.c, self.length) self.is_parsed = bool(HEAD in attrs or DEP in attrs) self.is_tagged = bool(TAG in attrs or POS in attrs) return self def get_lca_matrix(self): """Calculates the lowest common ancestor matrix for a given `Doc`. Returns LCA matrix containing the integer index of the ancestor, or -1 if no common ancestor is found (ex if span excludes a necessary ancestor). Apologies about the recursion, but the impact on performance is negligible given the natural limitations on the depth of a typical human sentence. """ # Efficiency notes: # We can easily improve the performance here by iterating in Cython. # To loop over the tokens in Cython, the easiest way is: # for token in doc.c[:doc.c.length]: # head = token + token.head # Both token and head will be TokenC* here. The token.head attribute # is an integer offset. def __pairwise_lca(token_j, token_k, lca_matrix): if lca_matrix[token_j.i][token_k.i] != -2: return lca_matrix[token_j.i][token_k.i] elif token_j == token_k: lca_index = token_j.i elif token_k.head == token_j: lca_index = token_j.i elif token_j.head == token_k: lca_index = token_k.i elif (token_j.head == token_j) and (token_k.head == token_k): lca_index = -1 else: lca_index = __pairwise_lca(token_j.head, token_k.head, lca_matrix) lca_matrix[token_j.i][token_k.i] = lca_index lca_matrix[token_k.i][token_j.i] = lca_index return lca_index lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32) lca_matrix.fill(-2) for j in range(len(self)): token_j = self[j] for k in range(j, len(self)): token_k = self[k] lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix) lca_matrix[k][j] = lca_matrix[j][k] return lca_matrix def to_disk(self, path, **exclude): """Save the current state to a directory. path (unicode or Path): A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path-like objects. """ path = util.ensure_path(path) with path.open('wb') as file_: file_.write(self.to_bytes(**exclude)) def from_disk(self, path, **exclude): """Loads state from a directory. Modifies the object in place and returns it. path (unicode or Path): A path to a directory. Paths may be either strings or `Path`-like objects. RETURNS (Doc): The modified `Doc` object. """ path = util.ensure_path(path) with path.open('rb') as file_: bytes_data = file_.read() return self.from_bytes(bytes_data, **exclude) def to_bytes(self, **exclude): """Serialize, i.e. export the document contents to a binary string. RETURNS (bytes): A losslessly serialized copy of the `Doc`, including all annotations. """ array_head = [LENGTH, SPACY, TAG, LEMMA, HEAD, DEP, ENT_IOB, ENT_TYPE] # Msgpack doesn't distinguish between lists and tuples, which is # vexing for user data. As a best guess, we *know* that within # keys, we must have tuples. In values we just have to hope # users don't mind getting a list instead of a tuple. serializers = { 'text': lambda: self.text, 'array_head': lambda: array_head, 'array_body': lambda: self.to_array(array_head), 'sentiment': lambda: self.sentiment, 'tensor': lambda: self.tensor, } if 'user_data' not in exclude and self.user_data: user_data_keys, user_data_values = list(zip(*self.user_data.items())) serializers['user_data_keys'] = lambda: msgpack.dumps(user_data_keys) serializers['user_data_values'] = lambda: msgpack.dumps(user_data_values) return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, **exclude): """Deserialize, i.e. import the document contents from a binary string. data (bytes): The string to load from. RETURNS (Doc): Itself. """ if self.length != 0: raise ValueError("Cannot load into non-empty Doc") deserializers = { 'text': lambda b: None, 'array_head': lambda b: None, 'array_body': lambda b: None, 'sentiment': lambda b: None, 'tensor': lambda b: None, 'user_data_keys': lambda b: None, 'user_data_values': lambda b: None, } msg = util.from_bytes(bytes_data, deserializers, exclude) # Msgpack doesn't distinguish between lists and tuples, which is # vexing for user data. As a best guess, we *know* that within # keys, we must have tuples. In values we just have to hope # users don't mind getting a list instead of a tuple. if 'user_data' not in exclude and 'user_data_keys' in msg: user_data_keys = msgpack.loads(msg['user_data_keys'], use_list=False) user_data_values = msgpack.loads(msg['user_data_values']) for key, value in zip(user_data_keys, user_data_values): self.user_data[key] = value cdef attr_t[:, :] attrs cdef int i, start, end, has_space self.sentiment = msg['sentiment'] self.tensor = msg['tensor'] start = 0 cdef const LexemeC* lex cdef unicode orth_ text = msg['text'] attrs = msg['array_body'] for i in range(attrs.shape[0]): end = start + attrs[i, 0] has_space = attrs[i, 1] orth_ = text[start:end] lex = self.vocab.get(self.mem, orth_) self.push_back(lex, has_space) start = end + has_space self.from_array(msg['array_head'][2:], attrs[:, 2:]) return self def extend_tensor(self, tensor): '''Concatenate a new tensor onto the doc.tensor object. The doc.tensor attribute holds dense feature vectors computed by the models in the pipeline. Let's say a document with 30 words has a tensor with 128 dimensions per word. doc.tensor.shape will be (30, 128). After calling doc.extend_tensor with an array of hape (30, 64), doc.tensor == (30, 192). ''' xp = get_array_module(self.tensor) if self.tensor.size == 0: self.tensor.resize(tensor.shape) copy_array(self.tensor, tensor) else: self.tensor = xp.hstack((self.tensor, tensor)) def merge(self, int start_idx, int end_idx, *args, **attributes): """Retokenize the document, such that the span at `doc.text[start_idx : end_idx]` is merged into a single token. If `start_idx` and `end_idx `do not mark start and end token boundaries, the document remains unchanged. start_idx (int): Character index of the start of the slice to merge. end_idx (int): Character index after the end of the slice to merge. **attributes: Attributes to assign to the merged token. By default, attributes are inherited from the syntactic root of the span. RETURNS (Token): The newly merged token, or `None` if the start and end indices did not fall at token boundaries. """ cdef unicode tag, lemma, ent_type if len(args) == 3: util.deprecated( "Positional arguments to Doc.merge are deprecated. Instead, " "use the keyword arguments, for example tag=, lemma= or " "ent_type=.") tag, lemma, ent_type = args attributes[TAG] = tag attributes[LEMMA] = lemma attributes[ENT_TYPE] = ent_type elif not args: if 'label' in attributes and 'ent_type' not in attributes: if isinstance(attributes['label'], int): attributes[ENT_TYPE] = attributes['label'] else: attributes[ENT_TYPE] = self.vocab.strings[attributes['label']] if 'ent_type' in attributes: attributes[ENT_TYPE] = attributes['ent_type'] elif args: raise ValueError( "Doc.merge received %d non-keyword arguments. Expected either " "3 arguments (deprecated), or 0 (use keyword arguments). " "Arguments supplied:\n%s\n" "Keyword arguments: %s\n" % (len(args), repr(args), repr(attributes))) # More deprecated attribute handling =/ if 'label' in attributes: attributes['ent_type'] = attributes.pop('label') attributes = intify_attrs(attributes, strings_map=self.vocab.strings) cdef int start = token_by_start(self.c, self.length, start_idx) if start == -1: return None cdef int end = token_by_end(self.c, self.length, end_idx) if end == -1: return None # Currently we have the token index, we want the range-end index end += 1 cdef Span span = self[start:end] # Get LexemeC for newly merged token new_orth = ''.join([t.text_with_ws for t in span]) if span[-1].whitespace_: new_orth = new_orth[:-len(span[-1].whitespace_)] cdef const LexemeC* lex = self.vocab.get(self.mem, new_orth) # House the new merged token where it starts cdef TokenC* token = &self.c[start] token.spacy = self.c[end-1].spacy for attr_name, attr_value in attributes.items(): if attr_name == TAG: self.vocab.morphology.assign_tag(token, attr_value) else: Token.set_struct_attr(token, attr_name, attr_value) # Begin by setting all the head indices to absolute token positions # This is easier to work with for now than the offsets # Before thinking of something simpler, beware the case where a # dependency bridges over the entity. Here the alignment of the # tokens changes. span_root = span.root.i token.dep = span.root.dep # We update token.lex after keeping span root and dep, since # setting token.lex will change span.start and span.end properties # as it modifies the character offsets in the doc token.lex = lex for i in range(self.length): self.c[i].head += i # Set the head of the merged token, and its dep relation, from the Span token.head = self.c[span_root].head # Adjust deps before shrinking tokens # Tokens which point into the merged token should now point to it # Subtract the offset from all tokens which point to >= end offset = (end - start) - 1 for i in range(self.length): head_idx = self.c[i].head if start <= head_idx < end: self.c[i].head = start elif head_idx >= end: self.c[i].head -= offset # Now compress the token array for i in range(end, self.length): self.c[i - offset] = self.c[i] for i in range(self.length - offset, self.length): memset(&self.c[i], 0, sizeof(TokenC)) self.c[i].lex = &EMPTY_LEXEME self.length -= offset for i in range(self.length): # ...And, set heads back to a relative position self.c[i].head -= i # Set the left/right children, left/right edges set_children_from_heads(self.c, self.length) # Clear the cached Python objects # Return the merged Python object return self[start] def print_tree(self, light=False, flat=False): """Returns the parse trees in JSON (dict) format. light (bool): Don't include lemmas or entities. flat (bool): Don't include arcs or modifiers. RETURNS (dict): Parse tree as dict. EXAMPLE: >>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.') >>> trees = doc.print_tree() >>> trees[1] {'modifiers': [ {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [ {'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'} """ return parse_tree(self, light=light, flat=flat) cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2: cdef int i for i in range(length): if tokens[i].idx == start_char: return i else: return -1 cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2: cdef int i for i in range(length): if tokens[i].idx + tokens[i].lex.length == end_char: return i else: return -1 cdef int set_children_from_heads(TokenC* tokens, int length) except -1: cdef TokenC* head cdef TokenC* child cdef int i # Set number of left/right children to 0. We'll increment it in the loops. for i in range(length): tokens[i].l_kids = 0 tokens[i].r_kids = 0 tokens[i].l_edge = i tokens[i].r_edge = i # Set left edges for i in range(length): child = &tokens[i] head = &tokens[i + child.head] if child < head: if child.l_edge < head.l_edge: head.l_edge = child.l_edge head.l_kids += 1 # Set right edges --- same as above, but iterate in reverse for i in range(length-1, -1, -1): child = &tokens[i] head = &tokens[i + child.head] if child > head: if child.r_edge > head.r_edge: head.r_edge = child.r_edge head.r_kids += 1 # Set sentence starts for i in range(length): if tokens[i].head == 0 and tokens[i].dep != 0: tokens[tokens[i].l_edge].sent_start = True def pickle_doc(doc): bytes_data = doc.to_bytes(vocab=False, user_data=False) hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks, doc.user_token_hooks) return (unpickle_doc, (doc.vocab, dill.dumps(hooks_and_data), bytes_data)) def unpickle_doc(vocab, hooks_and_data, bytes_data): user_data, doc_hooks, span_hooks, token_hooks = dill.loads(hooks_and_data) doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data, exclude='user_data') doc.user_hooks.update(doc_hooks) doc.user_span_hooks.update(span_hooks) doc.user_token_hooks.update(token_hooks) return doc copy_reg.pickle(Doc, pickle_doc, unpickle_doc)