# Load NER from __future__ import unicode_literals import spacy import pathlib from spacy.pipeline import EntityRecognizer from spacy.vocab import Vocab def load_model(model_dir): model_dir = pathlib.Path(model_dir) nlp = spacy.load('en', parser=False, entity=False, add_vectors=False) with (model_dir / 'vocab' / 'strings.json').open('r', encoding='utf8') as file_: nlp.vocab.strings.load(file_) nlp.vocab.load_lexemes(model_dir / 'vocab' / 'lexemes.bin') ner = EntityRecognizer.load(pathlib.Path("ner"), nlp.vocab, require=True) return (nlp, ner) (nlp, ner) = load_model('ner') doc = nlp.make_doc('Who is Shaka Khan?') nlp.tagger(doc) ner(doc) for word in doc: print(word.text, word.orth, word.lower, word.tag_, word.ent_type_, word.ent_iob)