import json import pathlib from collections import defaultdict from libc.string cimport memset from cymem.cymem cimport Pool from thinc.typedefs cimport atom_t, weight_t from thinc.extra.eg cimport Example from thinc.structs cimport ExampleC from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from .typedefs cimport attr_t from .tokens.doc cimport Doc from .attrs cimport TAG from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CCONJ, DET, NOUN, NUM, PRON from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE from .gold cimport GoldParse from .attrs cimport * cpdef enum: P2_orth P2_cluster P2_shape P2_prefix P2_suffix P2_pos P2_lemma P2_flags P1_orth P1_cluster P1_shape P1_prefix P1_suffix P1_pos P1_lemma P1_flags W_orth W_cluster W_shape W_prefix W_suffix W_pos W_lemma W_flags N1_orth N1_cluster N1_shape N1_prefix N1_suffix N1_pos N1_lemma N1_flags N2_orth N2_cluster N2_shape N2_prefix N2_suffix N2_pos N2_lemma N2_flags N_CONTEXT_FIELDS cdef class TaggerModel(AveragedPerceptron): def update(self, Example eg): self.time += 1 guess = eg.guess best = VecVec.arg_max_if_zero(eg.c.scores, eg.c.costs, eg.c.nr_class) if guess != best: for feat in eg.c.features[:eg.c.nr_feat]: self.update_weight_ftrl(feat.key, best, -feat.value) self.update_weight_ftrl(feat.key, guess, feat.value) cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *: _fill_from_token(&eg.atoms[P2_orth], &tokens[i-2]) _fill_from_token(&eg.atoms[P1_orth], &tokens[i-1]) _fill_from_token(&eg.atoms[W_orth], &tokens[i]) _fill_from_token(&eg.atoms[N1_orth], &tokens[i+1]) _fill_from_token(&eg.atoms[N2_orth], &tokens[i+2]) eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms) cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil: context[0] = t.lex.lower context[1] = t.lex.cluster context[2] = t.lex.shape context[3] = t.lex.prefix context[4] = t.lex.suffix context[5] = t.tag context[6] = t.lemma if t.lex.flags & (1 << IS_ALPHA): context[7] = 1 elif t.lex.flags & (1 << IS_PUNCT): context[7] = 2 elif t.lex.flags & (1 << LIKE_URL): context[7] = 3 elif t.lex.flags & (1 << LIKE_NUM): context[7] = 4 else: context[7] = 0 cdef class Tagger: """Annotate part-of-speech tags on Doc objects.""" @classmethod def load(cls, path, vocab, require=False): """Load the statistical model from the supplied path. Arguments: path (Path): The path to load from. vocab (Vocab): The vocabulary. Must be shared by the documents to be processed. require (bool): Whether to raise an error if the files are not found. Returns (Tagger): The newly created object. """ # TODO: Change this to expect config.json when we don't have to # support old data. path = path if not isinstance(path, basestring) else pathlib.Path(path) if (path / 'templates.json').exists(): with (path / 'templates.json').open('r', encoding='utf8') as file_: templates = json.load(file_) elif require: raise IOError( "Required file %s/templates.json not found when loading Tagger" % str(path)) else: templates = cls.feature_templates self = cls(vocab, model=None, feature_templates=templates) if (path / 'model').exists(): self.model.load(str(path / 'model')) elif require: raise IOError( "Required file %s/model not found when loading Tagger" % str(path)) return self def __init__(self, Vocab vocab, TaggerModel model=None, **cfg): """Create a Tagger. Arguments: vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. model (thinc.linear.AveragedPerceptron): The statistical model. Returns (Tagger): The newly constructed object. """ if model is None: model = TaggerModel(cfg.get('features', self.feature_templates), L1=0.0) self.vocab = vocab self.model = model self.model.l1_penalty = 0.0 # TODO: Move this to tag map self.freqs = {TAG: defaultdict(int)} for tag in self.tag_names: self.freqs[TAG][self.vocab.strings[tag]] = 1 self.freqs[TAG][0] = 1 self.cfg = cfg @property def tag_names(self): return self.vocab.morphology.tag_names def __reduce__(self): return (self.__class__, (self.vocab, self.model), None, None) def tag_from_strings(self, Doc tokens, object tag_strs): cdef int i for i in range(tokens.length): self.vocab.morphology.assign_tag(&tokens.c[i], tag_strs[i]) tokens.is_tagged = True tokens._py_tokens = [None] * tokens.length def __call__(self, Doc tokens): """Apply the tagger, setting the POS tags onto the Doc object. Arguments: doc (Doc): The tokens to be tagged. Returns: None """ if tokens.length == 0: return 0 cdef Pool mem = Pool() cdef int i, tag cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS, nr_class=self.vocab.morphology.n_tags, nr_feat=self.model.nr_feat) for i in range(tokens.length): if tokens.c[i].pos == 0: self.model.set_featuresC(&eg.c, tokens.c, i) self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat) guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class) self.vocab.morphology.assign_tag_id(&tokens.c[i], guess) eg.fill_scores(0, eg.c.nr_class) tokens.is_tagged = True tokens._py_tokens = [None] * tokens.length def pipe(self, stream, batch_size=1000, n_threads=2): """Tag a stream of documents. Arguments: stream: The sequence of documents to tag. batch_size (int): The number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel, if the Matcher implementation supports multi-threading. Yields: Doc Documents, in order. """ for doc in stream: self(doc) yield doc def update(self, Doc tokens, GoldParse gold): """Update the statistical model, with tags supplied for the given document. Arguments: doc (Doc): The document to update on. gold (GoldParse): Manager for the gold-standard tags. Returns (int): Number of tags correct. """ gold_tag_strs = gold.tags assert len(tokens) == len(gold_tag_strs) for tag in gold_tag_strs: if tag != None and tag not in self.tag_names: msg = ("Unrecognized gold tag: %s. tag_map.json must contain all " "gold tags, to maintain coarse-grained mapping.") raise ValueError(msg % tag) golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs] cdef int correct = 0 cdef Pool mem = Pool() cdef Example eg = Example( nr_atom=N_CONTEXT_FIELDS, nr_class=self.vocab.morphology.n_tags, nr_feat=self.model.nr_feat) for i in range(tokens.length): self.model.set_featuresC(&eg.c, tokens.c, i) eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ] self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat) self.model.update(eg) self.vocab.morphology.assign_tag_id(&tokens.c[i], eg.guess) correct += eg.cost == 0 self.freqs[TAG][tokens.c[i].tag] += 1 eg.fill_scores(0, eg.c.nr_class) eg.fill_costs(0, eg.c.nr_class) tokens.is_tagged = True tokens._py_tokens = [None] * tokens.length return correct feature_templates = ( (W_orth,), (P1_lemma, P1_pos), (P2_lemma, P2_pos), (N1_orth,), (N2_orth,), (W_suffix,), (W_prefix,), (P1_pos,), (P2_pos,), (P1_pos, P2_pos), (P1_pos, W_orth), (P1_suffix,), (N1_suffix,), (W_shape,), (W_cluster,), (N1_cluster,), (N2_cluster,), (P1_cluster,), (P2_cluster,), (W_flags,), (N1_flags,), (N2_flags,), (P1_flags,), (P2_flags,), )