# cython: profile=True from __future__ import unicode_literals from __future__ import division from os import path import os import shutil import json import cython import numpy.random from thinc.features cimport Feature, count_feats from thinc.api cimport Example cdef int arg_max(const weight_t* scores, const int n_classes) nogil: cdef int i cdef int best = 0 cdef weight_t mode = scores[0] for i in range(1, n_classes): if scores[i] > mode: mode = scores[i] best = i return best cdef int arg_max_if_true(const weight_t* scores, const int* is_valid, const int n_classes) nogil: cdef int i cdef int best = 0 cdef weight_t mode = -900000 for i in range(n_classes): if is_valid[i] and scores[i] > mode: mode = scores[i] best = i return best cdef int arg_max_if_zero(const weight_t* scores, const int* costs, const int n_classes) nogil: cdef int i cdef int best = 0 cdef weight_t mode = -900000 for i in range(n_classes): if costs[i] == 0 and scores[i] > mode: mode = scores[i] best = i return best cdef class Model: def __init__(self, n_classes, templates, model_loc=None): if model_loc is not None and path.isdir(model_loc): model_loc = path.join(model_loc, 'model') self.n_classes = n_classes self._extractor = Extractor(templates) self.n_feats = self._extractor.n_templ self._model = LinearModel(n_classes, self._extractor.n_templ) self.model_loc = model_loc if self.model_loc and path.exists(self.model_loc): self._model.load(self.model_loc, freq_thresh=0) def predict(self, Example eg): self.set_scores(eg.scores.data, eg.atoms.data) eg.guess = arg_max_if_true(eg.scores.data, eg.is_valid.data, self.n_classes) def train(self, Example eg): self.set_scores(eg.scores.data, eg.atoms.data) eg.guess = arg_max_if_true(eg.scores.data, eg.is_valid.data, self.n_classes) eg.best = arg_max_if_zero(eg.scores.data, eg.costs.data, self.n_classes) eg.cost = eg.costs[eg.guess] self.update(eg.atoms.data, eg.guess, eg.best, eg.cost) cdef const weight_t* score(self, atom_t* context) except NULL: cdef int n_feats feats = self._extractor.get_feats(context, &n_feats) return self._model.get_scores(feats, n_feats) cdef int set_scores(self, weight_t* scores, atom_t* context) except -1: cdef int n_feats feats = self._extractor.get_feats(context, &n_feats) self._model.set_scores(scores, feats, n_feats) cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1: cdef int n_feats if cost == 0: self._model.update({}) else: feats = self._extractor.get_feats(context, &n_feats) counts = {gold: {}, guess: {}} count_feats(counts[gold], feats, n_feats, cost) count_feats(counts[guess], feats, n_feats, -cost) self._model.update(counts) def end_training(self): self._model.end_training() self._model.dump(self.model_loc, freq_thresh=0)