# cython: infer_types=True, profile=True from typing import Optional, Tuple import srsly from thinc.api import set_dropout_rate, Model from ..tokens.doc cimport Doc from ..training import validate_examples from ..errors import Errors from .. import util cdef class Pipe: """This class is a base class and not instantiated directly. Trainable pipeline components like the EntityRecognizer or TextCategorizer inherit from it and it defines the interface that components should follow to function as trainable components in a spaCy pipeline. DOCS: https://nightly.spacy.io/api/pipe """ def __init__(self, vocab, model, name, **cfg): """Initialize a pipeline component. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name. **cfg: Additonal settings and config parameters. DOCS: https://nightly.spacy.io/api/pipe#init """ self.vocab = vocab self.model = model self.name = name self.cfg = dict(cfg) @property def labels(self) -> Optional[Tuple[str]]: return [] @property def label_data(self): """Optional JSON-serializable data that would be sufficient to recreate the label set if provided to the `pipe.initialize()` method. """ return None def __call__(self, Doc doc): """Apply the pipe to one document. The document is modified in place, and returned. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. docs (Doc): The Doc to process. RETURNS (Doc): The processed Doc. DOCS: https://nightly.spacy.io/api/pipe#call """ scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, *, batch_size=128): """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://nightly.spacy.io/api/pipe#pipe """ for docs in util.minibatch(stream, size=batch_size): scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs def predict(self, docs): """Apply the pipeline's model to a batch of docs, without modifying them. Returns a single tensor for a batch of documents. docs (Iterable[Doc]): The documents to predict. RETURNS: Vector representations for each token in the documents. DOCS: https://nightly.spacy.io/api/pipe#predict """ raise NotImplementedError(Errors.E931.format(method="predict", name=self.name)) def set_annotations(self, docs, scores): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. scores: The scores to assign. DOCS: https://nightly.spacy.io/api/pipe#set_annotations """ raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name)) def update(self, examples, *, drop=0.0, set_annotations=False, sgd=None, losses=None): """Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to predict and get_loss. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. set_annotations (bool): Whether or not to update the Example objects with the predictions. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://nightly.spacy.io/api/pipe#update """ if losses is None: losses = {} if not hasattr(self, "model") or self.model in (None, True, False): return losses losses.setdefault(self.name, 0.0) validate_examples(examples, "Pipe.update") if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples): # Handle cases where there are no tokens in any docs. return set_dropout_rate(self.model, drop) scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples]) loss, d_scores = self.get_loss(examples, scores) bp_scores(d_scores) if sgd not in (None, False): self.model.finish_update(sgd) losses[self.name] += loss if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, scores=scores) return losses def rehearse(self, examples, *, sgd=None, losses=None, **config): """Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model, to try to address the "catastrophic forgetting" problem. This feature is experimental. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://nightly.spacy.io/api/pipe#rehearse """ pass def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETUTNRS (Tuple[float, float]): The loss and the gradient. DOCS: https://nightly.spacy.io/api/pipe#get_loss """ raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name)) def add_label(self, label): """Add an output label, to be predicted by the model. It's possible to extend pretrained models with new labels, but care should be taken to avoid the "catastrophic forgetting" problem. label (str): The label to add. RETURNS (int): 0 if label is already present, otherwise 1. DOCS: https://nightly.spacy.io/api/pipe#add_label """ raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name)) def _require_labels(self) -> None: """Raise an error if the component's model has no labels defined.""" if not self.labels or list(self.labels) == [""]: raise ValueError(Errors.E143.format(name=self.name)) def _allow_extra_label(self) -> None: """Raise an error if the component can not add any more labels.""" if self.model.has_dim("nO") and self.model.get_dim("nO") == len(self.labels): if not self.is_resizable(): raise ValueError(Errors.E922.format(name=self.name, nO=self.model.get_dim("nO"))) def create_optimizer(self): """Create an optimizer for the pipeline component. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://nightly.spacy.io/api/pipe#create_optimizer """ return util.create_default_optimizer() def initialize(self, get_examples, *, nlp=None): """Initialize the pipe for training, using data examples if available. This method needs to be implemented by each Pipe component, ensuring the internal model (if available) is initialized properly using the provided sample of Example objects. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects. nlp (Language): The current nlp object the component is part of. DOCS: https://nightly.spacy.io/api/pipe#initialize """ pass def _ensure_examples(self, get_examples): if get_examples is None or not hasattr(get_examples, "__call__"): err = Errors.E930.format(name=self.name, obj=type(get_examples)) raise ValueError(err) if not get_examples(): err = Errors.E930.format(name=self.name, obj=get_examples()) raise ValueError(err) def is_resizable(self): return hasattr(self, "model") and "resize_output" in self.model.attrs def set_output(self, nO): if self.is_resizable(): self.model.attrs["resize_output"](self.model, nO) else: raise NotImplementedError(Errors.E921) def use_params(self, params): """Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored. params (dict): The parameter values to use in the model. DOCS: https://nightly.spacy.io/api/pipe#use_params """ with self.model.use_params(params): yield def score(self, examples, **kwargs): """Score a batch of examples. examples (Iterable[Example]): The examples to score. RETURNS (Dict[str, Any]): The scores. DOCS: https://nightly.spacy.io/api/pipe#score """ return {} def to_bytes(self, *, exclude=tuple()): """Serialize the pipe to a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. DOCS: https://nightly.spacy.io/api/pipe#to_bytes """ serialize = {} serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) serialize["model"] = self.model.to_bytes if hasattr(self, "vocab"): serialize["vocab"] = self.vocab.to_bytes return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load the pipe from a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Pipe): The loaded object. DOCS: https://nightly.spacy.io/api/pipe#from_bytes """ def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) from None deserialize = {} if hasattr(self, "vocab"): deserialize["vocab"] = lambda b: self.vocab.from_bytes(b) deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b)) deserialize["model"] = load_model util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, *, exclude=tuple()): """Serialize the pipe to disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://nightly.spacy.io/api/pipe#to_disk """ serialize = {} serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["vocab"] = lambda p: self.vocab.to_disk(p) serialize["model"] = lambda p: self.model.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, *, exclude=tuple()): """Load the pipe from disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Pipe): The loaded object. DOCS: https://nightly.spacy.io/api/pipe#from_disk """ def load_model(p): try: self.model.from_bytes(p.open("rb").read()) except AttributeError: raise ValueError(Errors.E149) from None deserialize = {} deserialize["vocab"] = lambda p: self.vocab.from_disk(p) deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) return self def deserialize_config(path): if path.exists(): return srsly.read_json(path) else: return {}