from libcpp.vector cimport vector from libc.stdint cimport uint32_t from libc.stdint cimport int64_t from libc.stdint cimport int32_t from libc.stdint cimport uint64_t from preshed.maps cimport PreshMap from murmurhash.mrmr cimport hash64 import numpy cimport cython # Format # - Total number of bytes in message (32 bit int) # - Words, terminating in an EOL symbol, huffman coded ~12 bits per word # - Spaces ~1 bit per word # - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag # combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab cdef struct Node: float prob int32_t left int32_t right cdef struct Code: uint64_t bits char length # Note that we're setting the most significant bits here first, when in practice # we're actually wanting the last bit to be most significant (for Huffman coding, # anyway). cdef Code bit_append(Code code, bint bit) nogil: cdef uint64_t one = 1 if bit: code.bits |= one << code.length else: code.bits &= ~(one << code.length) code.length += 1 return code cdef class HuffmanCodec: """Create a Huffman code table, and use it to pack and unpack sequences into byte strings. Emphasis is on efficiency, so API is quite strict: Messages will be encoded/decoded as indices that refer to the probability sequence. For instance, the sequence [5, 10, 8] indicates the 5th most frequent item, the 10th most frequent item, the 8th most frequent item. The codec will add the EOL symbol to your message. An exception will be raised if you include the EOL symbol in your message. Arguments: probs (float[:]): A descending-sorted sequence of probabilities/weights. Must include a weight for an EOL symbol. eol (uint32_t): The index of the weight of the EOL symbol. """ cdef vector[Node] nodes cdef vector[Code] codes cdef uint32_t eol def __init__(self, float[:] probs, uint32_t eol): self.eol = eol self.codes.resize(len(probs)) for i in range(len(self.codes)): self.codes[i].bits = 0 self.codes[i].length = 0 populate_nodes(self.nodes, probs) cdef Code path path.bits = 0 path.length = 0 assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path) def encode(self, uint32_t[:] sequence): cdef Code code cdef bytes output = b'' cdef unsigned char byte = 0 cdef uint64_t one = 1 cdef unsigned char i_of_byte = 0 cdef unsigned char i_of_code = 0 for index in list(sequence) + [self.eol]: code = self.codes[index] for i_of_code in range(code.length): if code.bits & (one << i_of_code): byte |= one << i_of_byte else: byte &= ~(one << i_of_byte) i_of_byte += 1 if i_of_byte == 8: output += chr(byte) byte = 0 i_of_byte = 0 if i_of_byte != 0: output += chr(byte) return output def decode(self, bytes data): node = self.nodes.back() symbols = [] cdef unsigned char byte cdef unsigned char i = 0 cdef unsigned char one = 1 for byte in data: for i in range(8): branch = node.right if (byte & (one << i)) else node.left if branch >= 0: node = self.nodes.at(branch) else: symbol = -(branch + 1) if symbol == self.eol: return symbols else: symbols.append(symbol) node = self.nodes.back() return symbols property strings: @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) def __get__(self): output = [] cdef int i, j cdef bytes string cdef Code code for i in range(self.codes.size()): code = self.codes[i] string = b'{0:b}'.format(code.bits).rjust(code.length, '0') string = string[::-1] output.append(string) return output @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1: assert len(probs) >= 3 cdef int size = len(probs) cdef int i = size - 1 cdef int j = 0 while i >= 0 or (j+1) < nodes.size(): if i < 0: _cover_two_nodes(nodes, j) j += 2 elif j >= nodes.size(): _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob): _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]: _cover_two_nodes(nodes, j) j += 2 else: _cover_one_word_one_node(nodes, j, i, probs[i]) i -= 1 j += 1 return 0 cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil: cdef Node node node.left = j node.right = j+1 node.prob = nodes[j].prob + nodes[j+1].prob nodes.push_back(node) cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil: cdef Node node # Encode leaves as negative integers, where the integer is the index of the # word in the vocabulary. cdef int64_t leaf_id = - (id_ + 1) cdef float new_prob = prob + nodes[j].prob if prob < nodes[j].prob: node.left = leaf_id node.right = j node.prob = new_prob else: node.left = j node.right = leaf_id node.prob = new_prob nodes.push_back(node) cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil: cdef Node node node.left = -(id1+1) node.right = -(id2+1) node.prob = prob nodes.push_back(node) cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, Code path) except -1: cdef Code left_path = bit_append(path, 0) cdef Code right_path = bit_append(path, 1) # Assign down left branch if nodes[i].left >= 0: assign_codes(nodes, codes, nodes[i].left, left_path) else: # Leaf on left id_ = -(nodes[i].left + 1) codes[id_] = left_path # Assign down right branch if nodes[i].right >= 0: assign_codes(nodes, codes, nodes[i].right, right_path) else: # Leaf on right id_ = -(nodes[i].right + 1) codes[id_] = right_path