# cython: infer_types=True, profile=True, binding=True import srsly from ..tokens.doc cimport Doc from ..util import link_vectors_to_models, create_default_optimizer from ..errors import Errors from .. import util def deserialize_config(path): if path.exists(): return srsly.read_json(path) else: return {} class Pipe: """This class is not instantiated directly. Components inherit from it, and it defines the interface that components should follow to function as components in a spaCy analysis pipeline. """ name = None def __init__(self, vocab, model, **cfg): """Create a new pipe instance.""" raise NotImplementedError def __call__(self, Doc doc): """Apply the pipe to one document. The document is modified in-place, and returned. Both __call__ and pipe should delegate to the `predict()` and `set_annotations()` methods. """ scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, batch_size=128): """Apply the pipe to a stream of documents. Both __call__ and pipe should delegate to the `predict()` and `set_annotations()` methods. """ for docs in util.minibatch(stream, size=batch_size): scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs def predict(self, docs): """Apply the pipeline's model to a batch of docs, without modifying them. """ raise NotImplementedError def set_annotations(self, docs, scores): """Modify a batch of documents, using pre-computed scores.""" raise NotImplementedError def rehearse(self, examples, sgd=None, losses=None, **config): pass def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of examples (with embedded docs) and their predicted scores.""" raise NotImplementedError def add_label(self, label): """Add an output label, to be predicted by the model. It's possible to extend pretrained models with new labels, but care should be taken to avoid the "catastrophic forgetting" problem. """ raise NotImplementedError def create_optimizer(self): return create_default_optimizer() def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None): """Initialize the pipe for training, using data exampes if available. If no model has been initialized yet, the model is added.""" self.model.initialize() if hasattr(self, "vocab"): link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd def set_output(self, nO): if self.model.has_dim("nO") is not False: self.model.set_dim("nO", nO) if self.model.has_ref("output_layer"): self.model.get_ref("output_layer").set_dim("nO", nO) def get_gradients(self): """Get non-zero gradients of the model's parameters, as a dictionary keyed by the parameter ID. The values are (weights, gradients) tuples. """ gradients = {} queue = [self.model] seen = set() for node in queue: if node.id in seen: continue seen.add(node.id) if hasattr(node, "_mem") and node._mem.gradient.any(): gradients[node.id] = [node._mem.weights, node._mem.gradient] if hasattr(node, "_layers"): queue.extend(node._layers) return gradients def use_params(self, params): """Modify the pipe's model, to use the given parameter values.""" with self.model.use_params(params): yield def score(self, examples, **kwargs): return {} def to_bytes(self, exclude=tuple()): """Serialize the pipe to a bytestring. exclude (list): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. """ serialize = {} serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) serialize["model"] = self.model.to_bytes if hasattr(self, "vocab"): serialize["vocab"] = self.vocab.to_bytes return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, exclude=tuple()): """Load the pipe from a bytestring.""" def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) deserialize = {} if hasattr(self, "vocab"): deserialize["vocab"] = lambda b: self.vocab.from_bytes(b) deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b)) deserialize["model"] = load_model util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, exclude=tuple()): """Serialize the pipe to disk.""" serialize = {} serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["vocab"] = lambda p: self.vocab.to_disk(p) serialize["model"] = lambda p: self.model.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude=tuple()): """Load the pipe from disk.""" def load_model(p): try: self.model.from_bytes(p.open("rb").read()) except AttributeError: raise ValueError(Errors.E149) deserialize = {} deserialize["vocab"] = lambda p: self.vocab.from_disk(p) deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) return self