{ "sidebar": { "Get started": { "Installation": "./", "Lightning tour": "lightning-tour" }, "Workflows": { "Loading the pipeline": "language-processing-pipeline", "Processing text": "processing-text", "spaCy's data model": "data-model", "Using the parse": "dependency-parse", "Entity recognition": "entity-recognition", "Custom pipelines": "customizing-pipeline", "Rule-based matching": "rule-based-matching", "Word vectors": "word-vectors-similarities", "Deep learning": "deep-learning", "Custom tokenization": "customizing-tokenizer", "Training": "training" }, "Examples": { "Tutorials": "tutorials", "Showcase": "showcase" } }, "index": { "title": "Install spaCy", "next": "lightning-tour" }, "lightning-tour": { "title": "Lightning tour" }, "language-processing-pipeline": { "title": "Loading a language processing pipeline", "next": "processing-text" }, "customizing-pipeline": { "title": "Customizing the pipeline", "next": "customizing-tokenizer" }, "processing-text": { "title": "Processing text", "next": "data-model" }, "data-model": { "title": "Understanding spaCy's data model" }, "dependency-parse": { "title": "Using the dependency parse", "next": "entity-recognition" }, "entity-recognition": { "title": "Entity recognition", "next": "rule-based-matching" }, "rule-based-matching": { "title": "Rule-based matching" }, "word-vectors-similarities": { "title": "Using word vectors and semantic similarities" }, "deep-learning": { "title": "Hooking a deep learning model into spaCy" }, "customizing-tokenizer": { "title": "Customizing the tokenizer", "next": "training" }, "training": { "title": "Training the tagger, parser and entity recognizer" }, "showcase": { "title": "Showcase", "libraries": { "spacy-nlp": { "url": "https://github.com/kengz/spacy-nlp", "author": "Wah Loon Keng", "description": "Expose spaCy NLP text parsing to Node.js (and other languages) via Socket.IO." }, "spacy-api-docker": { "url": "https://github.com/jgontrum/spacy-api-docker", "author": "Johannes Gontrum", "description": "spaCy accessed by a REST API, wrapped in a Docker container." }, "textacy": { "url": "https://github.com/chartbeat-labs/textacy", "author": " Burton DeWilde (Chartbeat)", "description": "Higher-level NLP built on spaCy." }, "visual-qa": { "url": "https://github.com/avisingh599/visual-qa", "author": "Avi Singh", "description": "Keras-based LSTM/CNN models for Visual Question Answering." }, "rasa_nlu": { "url": "https://github.com/golastmile/rasa_nlu", "author": "LASTMILE", "description": "High level APIs for building your own language parser using existing NLP and ML libraries." } }, "visualizations": { "displaCy": { "url": "https://demos.explosion.ai/displacy", "author": "Ines Montani", "description": "An open-source NLP visualiser for the modern web.", "image": "displacy.jpg" }, "displaCy ENT": { "url": "https://demos.explosion.ai/displacy-ent", "author": "Ines Montani", "description": "An open-source named entity visualiser for the modern web.", "image": "displacy-ent.jpg" } }, "products": { "sense2vec": { "url": "https://demos.explosion.ai/sense2vec", "author": "Matthew Honnibal and Ines Montani", "description": "Semantic analysis of the Reddit hivemind.", "image": "sense2vec.jpg" }, "TruthBot": { "url": "http://summerscope.github.io/govhack/2016/truthbot/", "author": "Team Truthbot", "description": "The world's first artificially intelligent fact checking robot.", "image": "truthbot.jpg" }, "Laice": { "url": "https://github.com/kendricktan/laice", "author": "Kendrick Tan", "description": "Train your own Natural Language Processor from a browser.", "image": "laice.jpg" }, "FoxType": { "url": "https://foxtype.com", "description": "Smart tools for writers.", "image": "foxtype.jpg" }, "Kip": { "url": "https://kipthis.com", "description": "An AI chat assistant for group shopping.", "image": "kip.jpg" }, "Indico": { "url": "https://indico.io", "description": "Text and image analysis powered by Machine Learning.", "image": "indico.jpg" }, "TextAnalysisOnline": { "url": "http://textanalysisonline.com", "description": "Online tool for spaCy's tokenizer, parser, NER and more.", "image": "textanalysis.jpg" } }, "books": { "Introduction to Machine Learning with Python: A Guide for Data Scientists": { "url": "https://books.google.de/books?id=vbQlDQAAQBAJ", "author": "Andreas C. Müller and Sarah Guido (O'Reilly, 2016)", "description": "Andreas is a lead developer of Scikit-Learn, and Sarah is a lead data scientist at Mashable. We're proud to get a mention." } }, "research": { "Distributional semantics for understanding spoken meal descriptions": { "url": "https://www.semanticscholar.org/paper/Distributional-semantics-for-understanding-spoken-Korpusik-Huang/5f55c5535e80d3e5ed7f1f0b89531e32725faff5", "author": "Mandy Korpusik et al. (2016)" }, "Refactoring the Genia Event Extraction Shared Task Toward a General Framework for IE-Driven KB Development": { "url": "https://www.semanticscholar.org/paper/Refactoring-the-Genia-Event-Extraction-Shared-Task-Kim-Wang/06d94b64a7bd2d3433f57caddad5084435d6a91f", "author": "Jin-Dong Kim et al. (2016)" }, "Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec": { "url": "https://www.semanticscholar.org/paper/Mixing-Dirichlet-Topic-Models-and-Word-Embeddings-Moody/bf8116e06f7b498c6abfbf97aeb67d0838c08609", "author": "Christopher E. Moody (2016)" }, "Predicting Pre-click Quality for Native Advertisements": { "url": "https://www.semanticscholar.org/paper/Predicting-Pre-click-Quality-for-Native-Zhou-Redi/564985430ff2fbc3a9daa9c2af8997b7f5046da8", "author": "Ke Zhou et al. (2016)" }, "Threat detection in online discussions": { "url": "https://www.semanticscholar.org/paper/Threat-detection-in-online-discussions-Wester-%C3%98vrelid/f4150e2fb4d8646ebc2ea84f1a86afa1b593239b", "author": "Aksel Wester et al. (2016)" }, "The language of mental health problems in social media": { "url": "https://www.semanticscholar.org/paper/The-language-of-mental-health-problems-in-social-Gkotsis-Oellrich/537db6c2984514d92a754a591841e2e20845985a", "author": "George Gkotsis et al. (2016)" } } }, "tutorials": { "title": "Tutorials", "next": "showcase", "first_steps": { "Setting up an NLP environment with Python": { "url": "https://shirishkadam.com/2016/10/06/setting-up-natural-language-processing-environment-with-python/", "author": "Shirish Kadam" }, "NLP with spaCy in 10 lines of code": { "url": "https://github.com/cytora/pycon-nlp-in-10-lines", "author": "Andraz Hribernik et al. (Cytora)", "tags": [ "jupyter" ] }, "Intro to NLP with spaCy": { "url": "https://nicschrading.com/project/Intro-to-NLP-with-spaCy/", "author": "J Nicolas Schrading" }, "NLP with spaCy and IPython Notebook": { "url": "http://blog.sharepointexperience.com/2016/01/nlp-and-sharepoint-part-1/", "author": "Dustin Miller (SharePoint)", "tags": [ "jupyter" ] }, "Getting Started with spaCy": { "url": "http://textminingonline.com/getting-started-with-spacy", "author": "TextMiner" }, "spaCy – A fast natural language processing library": { "url": "https://bjoernkw.com/2015/11/22/spacy-a-fast-natural-language-processing-library/", "author": "Björn Wilmsmann" }, "NLP (almost) From Scratch - POS Network with spaCy": { "url": "http://sujitpal.blogspot.de/2016/07/nlp-almost-from-scratch-implementing.html", "author": "Sujit Pal", "tags": [ "gensim", "keras" ] }, "NLP tasks with various libraries": { "url": "http://clarkgrubb.com/nlp", "author": "Clark Grubb" }, "A very (very) short primer on spacy.io": { "url": "http://blog.milonimrod.com/2015/10/a-very-very-short-primer-on-spacyio.html", "author": "Nimrod Milo " } }, "deep_dives": { "Modern NLP in Python – What you can learn about food by analyzing a million Yelp reviews": { "url": "http://nbviewer.jupyter.org/github/skipgram/modern-nlp-in-python/blob/master/executable/Modern_NLP_in_Python.ipynb", "author": "Patrick Harrison (S&P Global)", "tags": [ "jupyter", "gensim" ] }, "Deep Learning with custom pipelines and Keras": { "url": "https://explosion.ai/blog/spacy-deep-learning-keras", "author": "Matthew Honnibal", "tags": [ "keras", "sentiment" ] }, "A decomposable attention model for Natural Language Inference": { "url": "https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment", "author": "Matthew Honnibal", "tags": [ "keras", "similarity" ] }, "Using the German model": { "url": "https://explosion.ai/blog/german-model", "author": "Wolfgang Seeker", "tags": [ "multi-lingual" ] }, "Sense2vec with spaCy and Gensim": { "url": "https://explosion.ai/blog/sense2vec-with-spacy", "author": "Matthew Honnibal", "tags": [ "big data", "gensim" ] }, "Building your bot's brain with Node.js and spaCy": { "url": "https://explosion.ai/blog/chatbot-node-js-spacy", "author": "Wah Loon Keng", "tags": [ "bots", "node.js" ] }, "An intent classifier with spaCy": { "url": "http://blog.themusio.com/2016/07/18/musios-intent-classifier-2/", "author": "Musio", "tags": [ "bots", "keras" ] }, "Visual Question Answering with spaCy": { "url": "http://iamaaditya.github.io/2016/04/visual_question_answering_demo_notebook", "author": "Aaditya Prakash", "tags": [ "vqa", "keras" ] } }, "code": { "Information extraction": { "url": "https://github.com/explosion/spaCy/blob/master/examples/information_extraction.py", "author": "Matthew Honnibal", "tags": [ "snippet" ] }, "Neural bag of words": { "url": "https://github.com/explosion/spaCy/blob/master/examples/nn_text_class.py", "author": "Matthew Honnibal", "tags": [ "sentiment" ] }, "Part-of-speech tagging": { "url": "https://github.com/explosion/spaCy/blob/master/examples/pos_tag.py", "author": "Matthew Honnibal", "tags": [ "pos" ] }, "Parallel parse": { "url": "https://github.com/explosion/spaCy/blob/master/examples/parallel_parse.py", "author": "Matthew Honnibal", "tags": [ "big data" ] }, "Inventory count": { "url": "https://github.com/explosion/spaCy/tree/master/examples/inventory_count", "author": "Oleg Zd" }, "Multi-word matches": { "url": "https://github.com/explosion/spaCy/blob/master/examples/multi_word_matches.py", "author": "Matthew Honnibal", "tags": [ "matcher", "out of date" ] } } } }