from typing import Set, Dict, Callable, Any from thinc.api import Config from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS from .syntax_iterators import noun_chunks from .lemmatizer import is_base_form from .punctuation import TOKENIZER_INFIXES from ...language import Language from ...lemmatizer import Lemmatizer from ...util import registry DEFAULT_CONFIG = """ [nlp] lang = "en" stop_words = {"@language_data": "spacy.en.stop_words"} lex_attr_getters = {"@language_data": "spacy.en.lex_attr_getters"} get_noun_chunks = {"@language_data": "spacy.en.get_noun_chunks"} [nlp.lemmatizer] @lemmatizers = "spacy.EnglishLemmatizer.v1" [nlp.lemmatizer.data] @language_data = "spacy-lookups-data" lang = ${nlp:lang} tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"] [nlp.vocab_data] @language_data = "spacy-lookups-data" lang = ${nlp:lang} tables = ["lexeme_norm", "lexeme_cluster", "lexeme_prob", "lexeme_settings", "orth_variants"] """ @registry.language_data("spacy.en.stop_words") def stop_words() -> Set[str]: return STOP_WORDS @registry.language_data("spacy.en.lex_attr_getters") def lex_attr_getters() -> Dict[int, Callable[[str], Any]]: return LEX_ATTRS @registry.lemmatizers("spacy.EnglishLemmatizer.v1") def create_lemmatizer(data: Dict[str, dict] = {}) -> "Lemmatizer": return Lemmatizer(data=data, is_base_form=is_base_form) @registry.language_data("spacy.en.get_noun_chunks") def get_noun_chunks() -> Callable: return noun_chunks class EnglishDefaults(Language.Defaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS infixes = TOKENIZER_INFIXES class English(Language): lang = "en" Defaults = EnglishDefaults default_config = Config().from_str(DEFAULT_CONFIG) __all__ = ["English"]