import pytest from spacy import registry, Vocab from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer from spacy.pipeline import TextCategorizer, SentenceRecognizer, TrainablePipe from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL from spacy.pipeline.senter import DEFAULT_SENTER_MODEL from spacy.lang.en import English from thinc.api import Linear import spacy from ..util import make_tempdir test_parsers = [DependencyParser, EntityRecognizer] @pytest.fixture def parser(en_vocab): config = { "learn_tokens": False, "min_action_freq": 30, "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = DependencyParser(en_vocab, model, **config) parser.add_label("nsubj") return parser @pytest.fixture def blank_parser(en_vocab): config = { "learn_tokens": False, "min_action_freq": 30, "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = DependencyParser(en_vocab, model, **config) return parser @pytest.fixture def taggers(en_vocab): cfg = {"model": DEFAULT_TAGGER_MODEL} model = registry.resolve(cfg, validate=True)["model"] tagger1 = Tagger(en_vocab, model) tagger2 = Tagger(en_vocab, model) return tagger1, tagger2 @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_roundtrip_bytes(en_vocab, Parser): config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = Parser(en_vocab, model, **config) new_parser = Parser(en_vocab, model, **config) new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"])) bytes_2 = new_parser.to_bytes(exclude=["vocab"]) bytes_3 = parser.to_bytes(exclude=["vocab"]) assert len(bytes_2) == len(bytes_3) assert bytes_2 == bytes_3 @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_strings(Parser): vocab1 = Vocab() label = "FunnyLabel" assert label not in vocab1.strings config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser1 = Parser(vocab1, model, **config) parser1.add_label(label) assert label in parser1.vocab.strings vocab2 = Vocab() assert label not in vocab2.strings parser2 = Parser(vocab2, model, **config) parser2 = parser2.from_bytes(parser1.to_bytes(exclude=["vocab"])) assert label in parser2.vocab.strings @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_roundtrip_disk(en_vocab, Parser): config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = Parser(en_vocab, model, **config) with make_tempdir() as d: file_path = d / "parser" parser.to_disk(file_path) parser_d = Parser(en_vocab, model, **config) parser_d = parser_d.from_disk(file_path) parser_bytes = parser.to_bytes(exclude=["model", "vocab"]) parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"]) assert len(parser_bytes) == len(parser_d_bytes) assert parser_bytes == parser_d_bytes def test_to_from_bytes(parser, blank_parser): assert parser.model is not True assert blank_parser.model is not True assert blank_parser.moves.n_moves != parser.moves.n_moves bytes_data = parser.to_bytes(exclude=["vocab"]) # the blank parser needs to be resized before we can call from_bytes blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves) blank_parser.from_bytes(bytes_data) assert blank_parser.model is not True assert blank_parser.moves.n_moves == parser.moves.n_moves @pytest.mark.skip( reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms." ) def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers): tagger1 = taggers[0] tagger1_b = tagger1.to_bytes() tagger1 = tagger1.from_bytes(tagger1_b) assert tagger1.to_bytes() == tagger1_b cfg = {"model": DEFAULT_TAGGER_MODEL} model = registry.resolve(cfg, validate=True)["model"] new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b) new_tagger1_b = new_tagger1.to_bytes() assert len(new_tagger1_b) == len(tagger1_b) assert new_tagger1_b == tagger1_b def test_serialize_tagger_roundtrip_disk(en_vocab, taggers): tagger1, tagger2 = taggers with make_tempdir() as d: file_path1 = d / "tagger1" file_path2 = d / "tagger2" tagger1.to_disk(file_path1) tagger2.to_disk(file_path2) cfg = {"model": DEFAULT_TAGGER_MODEL} model = registry.resolve(cfg, validate=True)["model"] tagger1_d = Tagger(en_vocab, model).from_disk(file_path1) tagger2_d = Tagger(en_vocab, model).from_disk(file_path2) assert tagger1_d.to_bytes() == tagger2_d.to_bytes() def test_serialize_tagger_strings(en_vocab, de_vocab, taggers): label = "SomeWeirdLabel" assert label not in en_vocab.strings assert label not in de_vocab.strings tagger = taggers[0] assert label not in tagger.vocab.strings with make_tempdir() as d: # check that custom labels are serialized as part of the component's strings.jsonl tagger.add_label(label) assert label in tagger.vocab.strings file_path = d / "tagger1" tagger.to_disk(file_path) # ensure that the custom strings are loaded back in when using the tagger in another pipeline cfg = {"model": DEFAULT_TAGGER_MODEL} model = registry.resolve(cfg, validate=True)["model"] tagger2 = Tagger(de_vocab, model).from_disk(file_path) assert label in tagger2.vocab.strings def test_serialize_textcat_empty(en_vocab): # See issue #1105 cfg = {"model": DEFAULT_TEXTCAT_MODEL} model = registry.resolve(cfg, validate=True)["model"] textcat = TextCategorizer(en_vocab, model, threshold=0.5) textcat.to_bytes(exclude=["vocab"]) @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_pipe_exclude(en_vocab, Parser): cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } def get_new_parser(): new_parser = Parser(en_vocab, model, **config) return new_parser parser = Parser(en_vocab, model, **config) parser.cfg["foo"] = "bar" new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"])) assert "foo" in new_parser.cfg new_parser = get_new_parser().from_bytes( parser.to_bytes(exclude=["vocab"]), exclude=["cfg"] ) assert "foo" not in new_parser.cfg new_parser = get_new_parser().from_bytes( parser.to_bytes(exclude=["cfg"]), exclude=["vocab"] ) assert "foo" not in new_parser.cfg def test_serialize_sentencerecognizer(en_vocab): cfg = {"model": DEFAULT_SENTER_MODEL} model = registry.resolve(cfg, validate=True)["model"] sr = SentenceRecognizer(en_vocab, model) sr_b = sr.to_bytes() sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b) assert sr.to_bytes() == sr_d.to_bytes() def test_serialize_pipeline_disable_enable(): nlp = English() nlp.add_pipe("ner") nlp.add_pipe("tagger") nlp.disable_pipe("tagger") assert nlp.config["nlp"]["disabled"] == ["tagger"] config = nlp.config.copy() nlp2 = English.from_config(config) assert nlp2.pipe_names == ["ner"] assert nlp2.component_names == ["ner", "tagger"] assert nlp2.disabled == ["tagger"] assert nlp2.config["nlp"]["disabled"] == ["tagger"] with make_tempdir() as d: nlp2.to_disk(d) nlp3 = spacy.load(d) assert nlp3.pipe_names == ["ner"] assert nlp3.component_names == ["ner", "tagger"] with make_tempdir() as d: nlp3.to_disk(d) nlp4 = spacy.load(d, disable=["ner"]) assert nlp4.pipe_names == [] assert nlp4.component_names == ["ner", "tagger"] assert nlp4.disabled == ["ner", "tagger"] with make_tempdir() as d: nlp.to_disk(d) nlp5 = spacy.load(d, exclude=["tagger"]) assert nlp5.pipe_names == ["ner"] assert nlp5.component_names == ["ner"] assert nlp5.disabled == [] def test_serialize_custom_trainable_pipe(): class BadCustomPipe1(TrainablePipe): def __init__(self, vocab): pass class BadCustomPipe2(TrainablePipe): def __init__(self, vocab): self.vocab = vocab self.model = None class CustomPipe(TrainablePipe): def __init__(self, vocab, model): self.vocab = vocab self.model = model pipe = BadCustomPipe1(Vocab()) with pytest.raises(ValueError): pipe.to_bytes() with make_tempdir() as d: with pytest.raises(ValueError): pipe.to_disk(d) pipe = BadCustomPipe2(Vocab()) with pytest.raises(ValueError): pipe.to_bytes() with make_tempdir() as d: with pytest.raises(ValueError): pipe.to_disk(d) pipe = CustomPipe(Vocab(), Linear()) pipe_bytes = pipe.to_bytes() new_pipe = CustomPipe(Vocab(), Linear()).from_bytes(pipe_bytes) assert new_pipe.to_bytes() == pipe_bytes with make_tempdir() as d: pipe.to_disk(d) new_pipe = CustomPipe(Vocab(), Linear()).from_disk(d) assert new_pipe.to_bytes() == pipe_bytes