# coding: utf-8 from __future__ import unicode_literals import random from spacy.util import minibatch, compounding from examples.pipeline.wiki_entity_linking import wikipedia_processor as wp, kb_creator, training_set_creator, run_el from examples.pipeline.wiki_entity_linking.train_el import EL_Model import spacy from spacy.vocab import Vocab from spacy.kb import KnowledgeBase import datetime """ Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm. """ PRIOR_PROB = 'C:/Users/Sofie/Documents/data/wikipedia/prior_prob.csv' ENTITY_COUNTS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_freq.csv' ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv' ENTITY_DESCR = 'C:/Users/Sofie/Documents/data/wikipedia/entity_descriptions.csv' KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb' VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab' TRAINING_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_data_nel/' MAX_CANDIDATES = 10 MIN_PAIR_OCC = 5 DOC_CHAR_CUTOFF = 300 EPOCHS = 5 DROPOUT = 0.1 if __name__ == "__main__": print("START", datetime.datetime.now()) print() nlp = spacy.load('en_core_web_lg') my_kb = None # one-time methods to create KB and write to file to_create_prior_probs = False to_create_entity_counts = False to_create_kb = False # read KB back in from file to_read_kb = True to_test_kb = False # create training dataset create_wp_training = False train_pipe = True # run EL training run_el_training = False # apply named entity linking to the dev dataset apply_to_dev = False to_test_pipeline = False # STEP 1 : create prior probabilities from WP # run only once ! if to_create_prior_probs: print("STEP 1: to_create_prior_probs", datetime.datetime.now()) wp.read_wikipedia_prior_probs(prior_prob_output=PRIOR_PROB) print() # STEP 2 : deduce entity frequencies from WP # run only once ! if to_create_entity_counts: print("STEP 2: to_create_entity_counts", datetime.datetime.now()) wp.write_entity_counts(prior_prob_input=PRIOR_PROB, count_output=ENTITY_COUNTS, to_print=False) print() # STEP 3 : create KB and write to file # run only once ! if to_create_kb: print("STEP 3a: to_create_kb", datetime.datetime.now()) my_kb = kb_creator.create_kb(nlp, max_entities_per_alias=MAX_CANDIDATES, min_occ=MIN_PAIR_OCC, entity_def_output=ENTITY_DEFS, entity_descr_output=ENTITY_DESCR, count_input=ENTITY_COUNTS, prior_prob_input=PRIOR_PROB, to_print=False) print("kb entities:", my_kb.get_size_entities()) print("kb aliases:", my_kb.get_size_aliases()) print() print("STEP 3b: write KB", datetime.datetime.now()) my_kb.dump(KB_FILE) nlp.vocab.to_disk(VOCAB_DIR) print() # STEP 4 : read KB back in from file if to_read_kb: print("STEP 4: to_read_kb", datetime.datetime.now()) my_vocab = Vocab() my_vocab.from_disk(VOCAB_DIR) my_kb = KnowledgeBase(vocab=my_vocab, entity_vector_length=64) # TODO entity vectors my_kb.load_bulk(KB_FILE) print("kb entities:", my_kb.get_size_entities()) print("kb aliases:", my_kb.get_size_aliases()) print() # test KB if to_test_kb: run_el.run_kb_toy_example(kb=my_kb) print() # STEP 5: create a training dataset from WP if create_wp_training: print("STEP 5: create training dataset", datetime.datetime.now()) training_set_creator.create_training(kb=my_kb, entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR) # STEP 6: create the entity linking pipe if train_pipe: id_to_descr = kb_creator._get_id_to_description(ENTITY_DESCR) train_limit = 10 print("Training on", train_limit, "articles") train_data = training_set_creator.read_training(nlp=nlp, training_dir=TRAINING_DIR, dev=False, limit=train_limit, to_print=False) el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": my_kb, "doc_cutoff": DOC_CHAR_CUTOFF}) nlp.add_pipe(el_pipe, last=True) other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"] with nlp.disable_pipes(*other_pipes): # only train Entity Linking nlp.begin_training() for itn in range(EPOCHS): print() print("EPOCH", itn) random.shuffle(train_data) losses = {} batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001)) for batch in batches: docs, golds = zip(*batch) nlp.update( docs, golds, drop=DROPOUT, losses=losses, ) print("Losses", losses) # STEP 7: apply the EL algorithm on the dev dataset (TODO: overlaps with code from run_el_training ?) if apply_to_dev: run_el.run_el_dev(kb=my_kb, nlp=nlp, training_dir=TRAINING_DIR, limit=2000) print() # test KB if to_test_pipeline: run_el.run_el_toy_example(kb=my_kb, nlp=nlp) print() # TODO coreference resolution # add_coref() print() print("STOP", datetime.datetime.now())