from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable from pathlib import Path from .. import util from .example import Example from ..tokens import DocBin, Doc from ..vocab import Vocab if TYPE_CHECKING: # This lets us add type hints for mypy etc. without causing circular imports from ..language import Language # noqa: F401 @util.registry.readers("spacy.Corpus.v1") def create_docbin_reader( path: Path, gold_preproc: bool, max_length: int = 0, limit: int = 0 ) -> Callable[["Language"], Iterable[Example]]: return Corpus(path, gold_preproc=gold_preproc, max_length=max_length, limit=limit) class Corpus: """Iterate Example objects from a file or directory of DocBin (.spacy) formatted data files. path (Path): The directory or filename to read from. gold_preproc (bool): Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Gold preprocessing helps the annotations align to the tokenization, and may result in sequences of more consistent length. However, it may reduce run-time accuracy due to train/test skew. Defaults to False. max_length (int): Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to 0, which indicates no limit. limit (int): Limit corpus to a subset of examples, e.g. for debugging. Defaults to 0, which indicates no limit. DOCS: https://spacy.io/api/corpus """ def __init__( self, path: Union[str, Path], *, limit: int = 0, gold_preproc: bool = False, max_length: bool = False, ) -> None: self.path = util.ensure_path(path) self.gold_preproc = gold_preproc self.max_length = max_length self.limit = limit @staticmethod def walk_corpus(path: Union[str, Path]) -> List[Path]: path = util.ensure_path(path) if not path.is_dir(): return [path] paths = [path] locs = [] seen = set() for path in paths: if str(path) in seen: continue seen.add(str(path)) if path.parts and path.parts[-1].startswith("."): continue elif path.is_dir(): paths.extend(path.iterdir()) elif path.parts[-1].endswith(".spacy"): locs.append(path) return locs def __call__(self, nlp: "Language") -> Iterator[Example]: """Yield examples from the data. nlp (Language): The current nlp object. YIELDS (Example): The examples. DOCS: https://spacy.io/api/corpus#call """ ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.path)) if self.gold_preproc: examples = self.make_examples_gold_preproc(nlp, ref_docs) else: examples = self.make_examples(nlp, ref_docs, self.max_length) yield from examples def _make_example( self, nlp: "Language", reference: Doc, gold_preproc: bool ) -> Example: if gold_preproc or reference.has_unknown_spaces: return Example( Doc( nlp.vocab, words=[word.text for word in reference], spaces=[bool(word.whitespace_) for word in reference], ), reference, ) else: return Example(nlp.make_doc(reference.text), reference) def make_examples( self, nlp: "Language", reference_docs: Iterable[Doc], max_length: int = 0 ) -> Iterator[Example]: for reference in reference_docs: if len(reference) == 0: continue elif max_length == 0 or len(reference) < max_length: yield self._make_example(nlp, reference, False) elif reference.is_sentenced: for ref_sent in reference.sents: if len(ref_sent) == 0: continue elif max_length == 0 or len(ref_sent) < max_length: yield self._make_example(nlp, ref_sent.as_doc(), False) def make_examples_gold_preproc( self, nlp: "Language", reference_docs: Iterable[Doc] ) -> Iterator[Example]: for reference in reference_docs: if reference.is_sentenced: ref_sents = [sent.as_doc() for sent in reference.sents] else: ref_sents = [reference] for ref_sent in ref_sents: eg = self._make_example(nlp, ref_sent, True) if len(eg.x): yield eg def read_docbin( self, vocab: Vocab, locs: Iterable[Union[str, Path]] ) -> Iterator[Doc]: """ Yield training examples as example dicts """ i = 0 for loc in locs: loc = util.ensure_path(loc) if loc.parts[-1].endswith(".spacy"): doc_bin = DocBin().from_disk(loc) docs = doc_bin.get_docs(vocab) for doc in docs: if len(doc): yield doc i += 1 if self.limit >= 1 and i >= self.limit: break