from __future__ import division, unicode_literals, print_function import spacy import plac from pathlib import Path import ujson as json import numpy from keras.utils.np_utils import to_categorical from spacy_hook import get_embeddings, get_word_ids from spacy_hook import create_similarity_pipeline from keras_decomposable_attention import build_model def train(model_dir, train_loc, dev_loc, shape, settings): train_texts1, train_texts2, train_labels = read_snli(train_loc) dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc) print("Loading spaCy") nlp = spacy.load('en') print("Compiling network") model = build_model(get_embeddings(nlp.vocab), shape, settings) print("Processing texts...") Xs = [] for texts in (train_texts1, train_texts2, dev_texts1, dev_texts2): Xs.append(get_word_ids(list(nlp.pipe(texts, n_threads=20, batch_size=20000)), max_length=shape[0], rnn_encode=settings['gru_encode'], tree_truncate=settings['tree_truncate'])) train_X1, train_X2, dev_X1, dev_X2 = Xs print(settings) model.fit( [train_X1, train_X2], train_labels, validation_data=([dev_X1, dev_X2], dev_labels), nb_epoch=settings['nr_epoch'], batch_size=settings['batch_size']) def evaluate(model_dir, dev_loc): nlp = spacy.load('en', path=model_dir, tagger=False, parser=False, entity=False, matcher=False, create_pipeline=create_similarity_pipeline) n = 0 correct = 0 for (text1, text2), label in zip(dev_texts, dev_labels): doc1 = nlp(text1) doc2 = nlp(text2) sim = doc1.similarity(doc2) if bool(sim >= 0.5) == label: correct += 1 n += 1 return correct, total def demo(model_dir): nlp = spacy.load('en', path=model_dir, tagger=False, parser=False, entity=False, matcher=False, create_pipeline=create_similarity_pipeline) doc1 = nlp(u'Worst fries ever! Greasy and horrible...') doc2 = nlp(u'The milkshakes are good. The fries are bad.') print('doc1.similarity(doc2)', doc1.similarity(doc2)) sent1a, sent1b = doc1.sents print('sent1a.similarity(sent1b)', sent1a.similarity(sent1b)) print('sent1a.similarity(doc2)', sent1a.similarity(doc2)) print('sent1b.similarity(doc2)', sent1b.similarity(doc2)) LABELS = {'entailment': 0, 'contradiction': 1, 'neutral': 2} def read_snli(path): texts1 = [] texts2 = [] labels = [] with path.open() as file_: for line in file_: eg = json.loads(line) label = eg['gold_label'] if label == '-': continue texts1.append(eg['sentence1']) texts2.append(eg['sentence2']) labels.append(LABELS[label]) return texts1, texts2, to_categorical(numpy.asarray(labels, dtype='int32')) @plac.annotations( mode=("Mode to execute", "positional", None, str, ["train", "evaluate", "demo"]), model_dir=("Path to spaCy model directory", "positional", None, Path), train_loc=("Path to training data", "positional", None, Path), dev_loc=("Path to development data", "positional", None, Path), max_length=("Length to truncate sentences", "option", "L", int), nr_hidden=("Number of hidden units", "option", "H", int), dropout=("Dropout level", "option", "d", float), learn_rate=("Learning rate", "option", "e", float), batch_size=("Batch size for neural network training", "option", "b", float), nr_epoch=("Number of training epochs", "option", "i", int), tree_truncate=("Truncate sentences by tree distance", "flag", "T", bool), gru_encode=("Encode sentences with bidirectional GRU", "flag", "E", bool), ) def main(mode, model_dir, train_loc, dev_loc, tree_truncate=False, gru_encode=False, max_length=100, nr_hidden=100, dropout=0.2, learn_rate=0.001, batch_size=100, nr_epoch=5): shape = (max_length, nr_hidden, 3) settings = { 'lr': learn_rate, 'dropout': dropout, 'batch_size': batch_size, 'nr_epoch': nr_epoch, 'tree_truncate': tree_truncate, 'gru_encode': gru_encode } if mode == 'train': train(model_dir, train_loc, dev_loc, shape, settings) elif mode == 'evaluate': evaluate(model_dir, dev_loc) else: demo(model_dir) if __name__ == '__main__': plac.call(main)