# coding: utf8 from __future__ import print_function # NB! This breaks in plac on Python 2!! #from __future__ import unicode_literals import plac from spacy.cli import download as cli_download from spacy.cli import link as cli_link from spacy.cli import info as cli_info from spacy.cli import package as cli_package from spacy.cli import train as cli_train from spacy.cli import train_config as cli_train_config class CLI(object): """Command-line interface for spaCy""" commands = ('download', 'link', 'info', 'package', 'train', 'train_config') @plac.annotations( model=("model to download (shortcut or model name)", "positional", None, str), direct=("force direct download. Needs model name with version and won't " "perform compatibility check", "flag", "d", bool) ) def download(self, model=None, direct=False): """ Download compatible model from default download path using pip. Model can be shortcut, model name or, if --direct flag is set, full model name with version. """ cli_download(model, direct) @plac.annotations( origin=("package name or local path to model", "positional", None, str), link_name=("name of shortuct link to create", "positional", None, str), force=("force overwriting of existing link", "flag", "f", bool) ) def link(self, origin, link_name, force=False): """ Create a symlink for models within the spacy/data directory. Accepts either the name of a pip package, or the local path to the model data directory. Linking models allows loading them via spacy.load(link_name). """ cli_link(origin, link_name, force) @plac.annotations( model=("optional: shortcut link of model", "positional", None, str), markdown=("generate Markdown for GitHub issues", "flag", "md", str) ) def info(self, model=None, markdown=False): """ Print info about spaCy installation. If a model shortcut link is speficied as an argument, print model information. Flag --markdown prints details in Markdown for easy copy-pasting to GitHub issues. """ cli_info(model, markdown) @plac.annotations( input_dir=("directory with model data", "positional", None, str), output_dir=("output parent directory", "positional", None, str), force=("force overwriting of existing folder in output directory", "flag", "f", bool) ) def package(self, input_dir, output_dir, force=False): """ Generate Python package for model data, including meta and required installation files. A new directory will be created in the specified output directory, and model data will be copied over. """ cli_package(input_dir, output_dir, force) @plac.annotations( lang=("model language", "positional", None, str), output_dir=("output directory to store model in", "positional", None, str), train_data=("location of JSON-formatted training data", "positional", None, str), dev_data=("location of JSON-formatted development data (optional)", "positional", None, str), n_iter=("number of iterations", "option", "n", int), parser_L1=("L1 regularization penalty for parser", "option", "L", float), no_tagger=("Don't train tagger", "flag", "T", bool), no_parser=("Don't train parser", "flag", "P", bool), no_ner=("Don't train NER", "flag", "N", bool) ) def train(self, lang, output_dir, train_data, dev_data=None, n_iter=15, parser_L1=0.0, no_tagger=False, no_parser=False, no_ner=False): """ Train a model. Expects data in spaCy's JSON format. """ cli_train(lang, output_dir, train_data, dev_data, n_iter, not no_tagger, not no_parser, not no_ner, parser_L1) @plac.annotations( config=("config", "positional", None, str), ) def train_config(self, config): """ Train a model from config file. """ cli_train_config(config) def __missing__(self, name): print("\n Command %r does not exist\n" % name) if __name__ == '__main__': import plac import sys cli = CLI() sys.argv[0] = 'spacy' plac.Interpreter.call(CLI)