# cython: profile=True """ MALT-style dependency parser """ from __future__ import unicode_literals cimport cython import random import os.path from os.path import join as pjoin import shutil import json from cymem.cymem cimport Pool, Address from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t from util import Config from thinc.features cimport Extractor from thinc.features cimport Feature from thinc.features cimport count_feats from thinc.learner cimport LinearModel from ..tokens cimport Tokens, TokenC from .arc_eager cimport TransitionSystem from ._state cimport init_state, State, is_final, get_idx, get_s0, get_s1 from . import _parse_features from ._parse_features cimport fill_context, CONTEXT_SIZE DEBUG = False def set_debug(val): global DEBUG DEBUG = val cdef unicode print_state(State* s, list words): words = list(words) + ['EOL'] top = words[s.stack[0]] second = words[s.stack[-1]] n0 = words[s.i] n1 = words[s.i + 1] return ' '.join((second, top, '|', n0, n1)) def get_templates(name): pf = _parse_features if name == 'zhang': return pf.arc_eager else: templs = pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + pf.tree_shape + pf.trigrams return templs cdef class GreedyParser: def __init__(self, model_dir): assert os.path.exists(model_dir) and os.path.isdir(model_dir) self.cfg = Config.read(model_dir, 'config') self.extractor = Extractor(get_templates(self.cfg.features)) self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels) self.model = LinearModel(self.moves.n_moves, self.extractor.n_templ) if os.path.exists(pjoin(model_dir, 'model')): self.model.load(pjoin(model_dir, 'model')) cpdef int parse(self, Tokens tokens) except -1: cdef: Feature* feats const weight_t* scores int guess cdef atom_t[CONTEXT_SIZE] context cdef int n_feats cdef Pool mem = Pool() cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) feats = self.extractor.get_feats(context, &n_feats) scores = self.model.get_scores(feats, n_feats) guess = self.moves.best_valid(scores, state) self.moves.transition(state, guess) return 0 def train_sent(self, Tokens tokens, list gold_heads, list gold_labels): cdef: Feature* feats weight_t* scores cdef int n_feats cdef atom_t[CONTEXT_SIZE] context cdef Pool mem = Pool() cdef int* heads_array = mem.alloc(tokens.length, sizeof(int)) cdef int* labels_array = mem.alloc(tokens.length, sizeof(int)) cdef int i for i in range(tokens.length): heads_array[i] = gold_heads[i] labels_array[i] = self.moves.label_ids[gold_labels[i]] cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) feats = self.extractor.get_feats(context, &n_feats) scores = self.model.get_scores(feats, n_feats) guess = self.moves.best_valid(scores, state) best = self.moves.best_gold(scores, state, heads_array, labels_array) counts = _get_counts(guess, best, feats, n_feats) self.model.update(counts) self.moves.transition(state, guess) cdef int n_corr = 0 for i in range(tokens.length): n_corr += (i + state.sent[i].head) == gold_heads[i] return n_corr cdef dict _get_counts(int guess, int best, const Feature* feats, const int n_feats): if guess == best: return {} gold_counts = {} guess_counts = {} cdef int i for i in range(n_feats): key = (feats[i].i, feats[i].key) if key in gold_counts: gold_counts[key] += feats[i].value guess_counts[key] -= feats[i].value else: gold_counts[key] = feats[i].value guess_counts[key] = -feats[i].value return {guess: guess_counts, best: gold_counts}