from libc.string cimport memmove, memcpy from cymem.cymem cimport Pool from ..lexeme cimport EMPTY_LEXEME from ..structs cimport TokenC, Entity, Constituent DEF PADDING = 5 DEF NON_MONOTONIC = True cdef int add_dep(State *s, int head, int child, int label) except -1: if has_head(&s.sent[child]): del_dep(s, child + s.sent[child].head, child) cdef int dist = head - child s.sent[child].head = dist s.sent[child].dep = label # Keep a bit-vector tracking child dependencies. If a word has a child at # offset i from it, set that bit (tracking left and right separately) if child > head: s.sent[head].r_kids |= 1 << (-dist) s.sent[head].r_edge = child - head # Walk up the tree, setting right edge while s.sent[head].head != 0: head += s.sent[head].head s.sent[head].r_edge = child - head else: s.sent[head].l_kids |= 1 << dist s.sent[head].l_edge = (child + s.sent[child].l_edge) - head cdef int del_dep(State *s, int head, int child) except -1: cdef const TokenC* next_child cdef int dist = head - child if child > head: s.sent[head].r_kids &= ~(1 << (-dist)) next_child = get_right(s, &s.sent[head], 1) if next_child == NULL: s.sent[head].r_edge = 0 else: s.sent[head].r_edge = next_child.r_edge else: s.sent[head].l_kids &= ~(1 << dist) next_child = get_left(s, &s.sent[head], 1) if next_child == NULL: s.sent[head].l_edge = 0 else: s.sent[head].l_edge = next_child.l_edge cdef int pop_stack(State *s) except -1: assert s.stack_len >= 1 s.stack_len -= 1 s.stack -= 1 if s.stack_len == 0 and not at_eol(s): push_stack(s) cdef int push_stack(State *s) except -1: assert s.i < s.sent_len s.stack += 1 s.stack[0] = s.i s.stack_len += 1 s.i += 1 cdef int children_in_buffer(const State *s, int head, const int* gold) except -1: # Golds holds an array of head offsets --- the head of word i is i - golds[i] # Iterate over the tokens of the queue, and check whether their gold head is # our target cdef int i cdef int n = 0 for i in range(s.i, s.sent_len): if gold[i] == head: n += 1 return n cdef int head_in_buffer(const State *s, const int child, const int* gold) except -1: return gold[child] >= s.i cdef int children_in_stack(const State *s, const int head, const int* gold) except -1: cdef int i cdef int n = 0 for i in range(s.stack_len): if gold[s.stack[-i]] == head: if NON_MONOTONIC or not has_head(get_s0(s)): n += 1 return n cdef int head_in_stack(const State *s, const int child, const int* gold) except -1: cdef int i for i in range(s.stack_len): if gold[child] == s.stack[-i]: return 1 return 0 cdef bint has_head(const TokenC* t) nogil: return t.head != 0 cdef const TokenC* get_left(const State* s, const TokenC* head, const int idx) nogil: cdef uint32_t kids = head.l_kids if kids == 0: return NULL cdef int offset = _nth_significant_bit(kids, idx) cdef const TokenC* child = head - offset if child >= s.sent: return child else: return NULL cdef const TokenC* get_right(const State* s, const TokenC* head, const int idx) nogil: cdef uint32_t kids = head.r_kids if kids == 0: return NULL cdef int offset = _nth_significant_bit(kids, idx) cdef const TokenC* child = head + offset if child < (s.sent + s.sent_len): return child else: return NULL cdef int count_left_kids(const TokenC* head) nogil: return _popcount(head.l_kids) cdef int count_right_kids(const TokenC* head) nogil: return _popcount(head.r_kids) cdef State* new_state(Pool mem, const TokenC* sent, const int sent_len) except NULL: cdef int padded_len = sent_len + PADDING + PADDING cdef State* s = mem.alloc(1, sizeof(State)) s.ctnt = mem.alloc(padded_len, sizeof(Constituent)) s.ent = mem.alloc(padded_len, sizeof(Entity)) s.stack = mem.alloc(padded_len, sizeof(int)) for i in range(PADDING): s.stack[i] = -1 s.ctnt += (PADDING -1) s.stack += (PADDING - 1) s.ent += (PADDING - 1) assert s.stack[0] == -1 state_sent = mem.alloc(padded_len, sizeof(TokenC)) memcpy(state_sent, sent - PADDING, padded_len * sizeof(TokenC)) s.sent = state_sent + PADDING s.stack_len = 0 s.i = 0 s.sent_len = sent_len return s # From https://en.wikipedia.org/wiki/Hamming_weight cdef inline uint32_t _popcount(uint32_t x) nogil: """Find number of non-zero bits.""" cdef int count = 0 while x != 0: x &= x - 1 count += 1 return count cdef inline uint32_t _nth_significant_bit(uint32_t bits, int n) nogil: cdef int i for i in range(32): if bits & (1 << i): n -= 1 if n < 1: return i return 0