from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List, Tuple from thinc.api import Model, set_dropout_rate, Optimizer, Config from .pipe import Pipe from ..gold import Example from ..tokens import Doc from ..vocab import Vocab from ..language import Language from ..errors import Errors from ..util import minibatch default_model_config = """ [model] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true dropout = null """ DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "tok2vec", assigns=["doc.tensor"], default_config={"model": DEFAULT_TOK2VEC_MODEL} ) def make_tok2vec(nlp: Language, name: str, model: Model) -> "Tok2Vec": return Tok2Vec(nlp.vocab, model, name) class Tok2Vec(Pipe): def __init__(self, vocab: Vocab, model: Model, name: str = "tok2vec") -> None: """Initialize a tok2vec component. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name. DOCS: https://spacy.io/api/tok2vec#init """ self.vocab = vocab self.model = model self.name = name self.listeners = [] self.cfg = {} def add_listener(self, listener: "Tok2VecListener") -> None: self.listeners.append(listener) def find_listeners(self, model: Model) -> None: for node in model.walk(): if isinstance(node, Tok2VecListener) and node.upstream_name in ( "*", self.name, ): self.add_listener(node) def __call__(self, doc: Doc) -> Doc: """Add context-sensitive embeddings to the Doc.tensor attribute. docs (Doc): The Doc to preocess. RETURNS (Doc): The processed Doc. DOCS: https://spacy.io/api/tok2vec#call """ tokvecses = self.predict([doc]) self.set_annotations([doc], tokvecses) return doc def pipe(self, stream: Iterator[Doc], *, batch_size: int = 128) -> Iterator[Doc]: """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://spacy.io/api/tok2vec#pipe """ for docs in minibatch(stream, batch_size): docs = list(docs) tokvecses = self.predict(docs) self.set_annotations(docs, tokvecses) yield from docs def predict(self, docs: Iterable[Doc]): """Apply the pipeline's model to a batch of docs, without modifying them. Returns a single tensor for a batch of documents. docs (Iterable[Doc]): The documents to predict. RETURNS: Vector representations for each token in the documents. DOCS: https://spacy.io/api/tok2vec#predict """ tokvecs = self.model.predict(docs) batch_id = Tok2VecListener.get_batch_id(docs) for listener in self.listeners: listener.receive(batch_id, tokvecs, None) return tokvecs def set_annotations(self, docs: Sequence[Doc], tokvecses) -> None: """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. tokvecses: The tensors to set, produced by Tok2Vec.predict. DOCS: https://spacy.io/api/tok2vec#set_annotations """ for doc, tokvecs in zip(docs, tokvecses): assert tokvecs.shape[0] == len(doc) doc.tensor = tokvecs def update( self, examples: Iterable[Example], *, drop: float = 0.0, sgd: Optional[Optimizer] = None, losses: Optional[Dict[str, float]] = None, set_annotations: bool = False, ): """Learn from a batch of documents and gold-standard information, updating the pipe's model. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. set_annotations (bool): Whether or not to update the Example objects with the predictions. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://spacy.io/api/tok2vec#update """ if losses is None: losses = {} docs = [eg.predicted for eg in examples] if isinstance(docs, Doc): docs = [docs] set_dropout_rate(self.model, drop) tokvecs, bp_tokvecs = self.model.begin_update(docs) d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs] losses.setdefault(self.name, 0.0) def accumulate_gradient(one_d_tokvecs): """Accumulate tok2vec loss and gradient. This is passed as a callback to all but the last listener. Only the last one does the backprop. """ nonlocal d_tokvecs for i in range(len(one_d_tokvecs)): d_tokvecs[i] += one_d_tokvecs[i] losses[self.name] += float((one_d_tokvecs[i] ** 2).sum()) def backprop(one_d_tokvecs): """Callback to actually do the backprop. Passed to last listener.""" accumulate_gradient(one_d_tokvecs) d_docs = bp_tokvecs(d_tokvecs) if sgd is not None: self.model.finish_update(sgd) return d_docs batch_id = Tok2VecListener.get_batch_id(docs) for listener in self.listeners[:-1]: listener.receive(batch_id, tokvecs, accumulate_gradient) self.listeners[-1].receive(batch_id, tokvecs, backprop) if set_annotations: self.set_annotations(docs, tokvecs) return losses def get_loss(self, examples, scores) -> None: pass def begin_training( self, get_examples: Callable[[], Iterable[Example]] = lambda: [], *, pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None, sgd: Optional[Optimizer] = None, ): """Initialize the pipe for training, using data examples if available. get_examples (Callable[[], Iterable[Example]]): Optional function that returns gold-standard Example objects. pipeline (List[Tuple[str, Callable]]): Optional list of pipeline components that this component is part of. Corresponds to nlp.pipeline. sgd (thinc.api.Optimizer): Optional optimizer. Will be created with create_optimizer if it doesn't exist. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/tok2vec#begin_training """ docs = [Doc(self.vocab, words=["hello"])] self.model.initialize(X=docs) class Tok2VecListener(Model): """A layer that gets fed its answers from an upstream connection, for instance from a component earlier in the pipeline. """ name = "tok2vec-listener" def __init__(self, upstream_name: str, width: int) -> None: Model.__init__(self, name=self.name, forward=forward, dims={"nO": width}) self.upstream_name = upstream_name self._batch_id = None self._outputs = None self._backprop = None @classmethod def get_batch_id(cls, inputs) -> int: return sum(sum(token.orth for token in doc) for doc in inputs) def receive(self, batch_id: int, outputs, backprop) -> None: self._batch_id = batch_id self._outputs = outputs self._backprop = backprop def verify_inputs(self, inputs) -> bool: if self._batch_id is None and self._outputs is None: raise ValueError(Errors.E954) else: batch_id = self.get_batch_id(inputs) if batch_id != self._batch_id: raise ValueError(Errors.E953.format(id1=batch_id, id2=self._batch_id)) else: return True def forward(model: Tok2VecListener, inputs, is_train: bool): if is_train: model.verify_inputs(inputs) return model._outputs, model._backprop else: return [doc.tensor for doc in inputs], lambda dX: []