from itertools import islice from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List from pathlib import Path import srsly import random from thinc.api import CosineDistance, Model, Optimizer, Config from thinc.api import set_dropout_rate import warnings from ..kb import KnowledgeBase, Candidate from ..ml import empty_kb from ..tokens import Doc from .pipe import deserialize_config from .trainable_pipe import TrainablePipe from ..language import Language from ..vocab import Vocab from ..training import Example, validate_examples, validate_get_examples from ..errors import Errors, Warnings from ..util import SimpleFrozenList from .. import util from ..scorer import Scorer default_model_config = """ [model] @architectures = "spacy.EntityLinker.v1" [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 96 depth = 2 embed_size = 300 window_size = 1 maxout_pieces = 3 subword_features = true """ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "entity_linker", requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"], assigns=["token.ent_kb_id"], default_config={ "model": DEFAULT_NEL_MODEL, "labels_discard": [], "incl_prior": True, "incl_context": True, "entity_vector_length": 64, "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"}, }, default_score_weights={ "nel_micro_f": 1.0, "nel_micro_r": None, "nel_micro_p": None, }, ) def make_entity_linker( nlp: Language, name: str, model: Model, *, labels_discard: Iterable[str], incl_prior: bool, incl_context: bool, entity_vector_length: int, get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]], ): """Construct an EntityLinker component. model (Model[List[Doc], Floats2d]): A model that learns document vector representations. Given a batch of Doc objects, it should return a single array, with one row per item in the batch. labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction. incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. incl_context (bool): Whether or not to include the local context in the model. entity_vector_length (int): Size of encoding vectors in the KB. get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that produces a list of candidates, given a certain knowledge base and a textual mention. """ return EntityLinker( nlp.vocab, model, name, labels_discard=labels_discard, incl_prior=incl_prior, incl_context=incl_context, entity_vector_length=entity_vector_length, get_candidates=get_candidates, ) class EntityLinker(TrainablePipe): """Pipeline component for named entity linking. DOCS: https://nightly.spacy.io/api/entitylinker """ NIL = "NIL" # string used to refer to a non-existing link def __init__( self, vocab: Vocab, model: Model, name: str = "entity_linker", *, labels_discard: Iterable[str], incl_prior: bool, incl_context: bool, entity_vector_length: int, get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]], ) -> None: """Initialize an entity linker. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction. incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. incl_context (bool): Whether or not to include the local context in the model. entity_vector_length (int): Size of encoding vectors in the KB. get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that produces a list of candidates, given a certain knowledge base and a textual mention. DOCS: https://nightly.spacy.io/api/entitylinker#init """ self.vocab = vocab self.model = model self.name = name cfg = { "labels_discard": list(labels_discard), "incl_prior": incl_prior, "incl_context": incl_context, "entity_vector_length": entity_vector_length, } self.get_candidates = get_candidates self.cfg = dict(cfg) self.distance = CosineDistance(normalize=False) # how many neightbour sentences to take into account self.n_sents = cfg.get("n_sents", 0) # create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'. self.kb = empty_kb(entity_vector_length)(self.vocab) def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): """Define the KB of this pipe by providing a function that will create it using this object's vocab.""" self.kb = kb_loader(self.vocab) self.cfg["entity_vector_length"] = self.kb.entity_vector_length def validate_kb(self) -> None: # Raise an error if the knowledge base is not initialized. if len(self.kb) == 0: raise ValueError(Errors.E139.format(name=self.name)) def initialize( self, get_examples: Callable[[], Iterable[Example]], *, nlp: Optional[Language] = None, kb_loader: Callable[[Vocab], KnowledgeBase] = None, ): """Initialize the pipe for training, using a representative set of data examples. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects. nlp (Language): The current nlp object the component is part of. kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance. Note that providing this argument, will overwrite all data accumulated in the current KB. Use this only when loading a KB as-such from file. DOCS: https://nightly.spacy.io/api/entitylinker#initialize """ validate_get_examples(get_examples, "EntityLinker.initialize") if kb_loader is not None: self.set_kb(kb_loader) self.validate_kb() nO = self.kb.entity_vector_length doc_sample = [] vector_sample = [] for example in islice(get_examples(), 10): doc_sample.append(example.x) vector_sample.append(self.model.ops.alloc1f(nO)) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(vector_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize( X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32") ) def update( self, examples: Iterable[Example], *, set_annotations: bool = False, drop: float = 0.0, sgd: Optional[Optimizer] = None, losses: Optional[Dict[str, float]] = None, ) -> Dict[str, float]: """Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to predict and get_loss. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. set_annotations (bool): Whether or not to update the Example objects with the predictions. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://nightly.spacy.io/api/entitylinker#update """ self.validate_kb() if losses is None: losses = {} losses.setdefault(self.name, 0.0) if not examples: return losses validate_examples(examples, "EntityLinker.update") sentence_docs = [] docs = [eg.predicted for eg in examples] if set_annotations: # This seems simpler than other ways to get that exact output -- but # it does run the model twice :( predictions = self.model.predict(docs) for eg in examples: sentences = [s for s in eg.reference.sents] kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True) for ent in eg.reference.ents: # KB ID of the first token is the same as the whole span kb_id = kb_ids[ent.start] if kb_id: try: # find the sentence in the list of sentences. sent_index = sentences.index(ent.sent) except AttributeError: # Catch the exception when ent.sent is None and provide a user-friendly warning raise RuntimeError(Errors.E030) from None # get n previous sentences, if there are any start_sentence = max(0, sent_index - self.n_sents) # get n posterior sentences, or as many < n as there are end_sentence = min(len(sentences) - 1, sent_index + self.n_sents) # get token positions start_token = sentences[start_sentence].start end_token = sentences[end_sentence].end # append that span as a doc to training sent_doc = eg.predicted[start_token:end_token].as_doc() sentence_docs.append(sent_doc) set_dropout_rate(self.model, drop) if not sentence_docs: warnings.warn(Warnings.W093.format(name="Entity Linker")) return losses sentence_encodings, bp_context = self.model.begin_update(sentence_docs) loss, d_scores = self.get_loss( sentence_encodings=sentence_encodings, examples=examples ) bp_context(d_scores) if sgd is not None: self.finish_update(sgd) losses[self.name] += loss if set_annotations: self.set_annotations(docs, predictions) return losses def get_loss(self, examples: Iterable[Example], sentence_encodings): validate_examples(examples, "EntityLinker.get_loss") entity_encodings = [] for eg in examples: kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True) for ent in eg.reference.ents: kb_id = kb_ids[ent.start] if kb_id: entity_encoding = self.kb.get_vector(kb_id) entity_encodings.append(entity_encoding) entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32") if sentence_encodings.shape != entity_encodings.shape: err = Errors.E147.format( method="get_loss", msg="gold entities do not match up" ) raise RuntimeError(err) gradients = self.distance.get_grad(sentence_encodings, entity_encodings) loss = self.distance.get_loss(sentence_encodings, entity_encodings) loss = loss / len(entity_encodings) return loss, gradients def __call__(self, doc: Doc) -> Doc: """Apply the pipe to a Doc. doc (Doc): The document to process. RETURNS (Doc): The processed Doc. DOCS: https://nightly.spacy.io/api/entitylinker#call """ kb_ids = self.predict([doc]) self.set_annotations([doc], kb_ids) return doc def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]: """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://nightly.spacy.io/api/entitylinker#pipe """ for docs in util.minibatch(stream, size=batch_size): kb_ids = self.predict(docs) self.set_annotations(docs, kb_ids) yield from docs def predict(self, docs: Iterable[Doc]) -> List[str]: """Apply the pipeline's model to a batch of docs, without modifying them. Returns the KB IDs for each entity in each doc, including NIL if there is no prediction. docs (Iterable[Doc]): The documents to predict. RETURNS (List[int]): The models prediction for each document. DOCS: https://nightly.spacy.io/api/entitylinker#predict """ self.validate_kb() entity_count = 0 final_kb_ids = [] if not docs: return final_kb_ids if isinstance(docs, Doc): docs = [docs] for i, doc in enumerate(docs): sentences = [s for s in doc.sents] if len(doc) > 0: # Looping through each sentence and each entity # This may go wrong if there are entities across sentences - which shouldn't happen normally. for sent_index, sent in enumerate(sentences): if sent.ents: # get n_neightbour sentences, clipped to the length of the document start_sentence = max(0, sent_index - self.n_sents) end_sentence = min( len(sentences) - 1, sent_index + self.n_sents ) start_token = sentences[start_sentence].start end_token = sentences[end_sentence].end sent_doc = doc[start_token:end_token].as_doc() # currently, the context is the same for each entity in a sentence (should be refined) xp = self.model.ops.xp if self.cfg.get("incl_context"): sentence_encoding = self.model.predict([sent_doc])[0] sentence_encoding_t = sentence_encoding.T sentence_norm = xp.linalg.norm(sentence_encoding_t) for ent in sent.ents: entity_count += 1 to_discard = self.cfg.get("labels_discard", []) if to_discard and ent.label_ in to_discard: # ignoring this entity - setting to NIL final_kb_ids.append(self.NIL) else: candidates = self.get_candidates(self.kb, ent) if not candidates: # no prediction possible for this entity - setting to NIL final_kb_ids.append(self.NIL) elif len(candidates) == 1: # shortcut for efficiency reasons: take the 1 candidate # TODO: thresholding final_kb_ids.append(candidates[0].entity_) else: random.shuffle(candidates) # set all prior probabilities to 0 if incl_prior=False prior_probs = xp.asarray( [c.prior_prob for c in candidates] ) if not self.cfg.get("incl_prior"): prior_probs = xp.asarray( [0.0 for _ in candidates] ) scores = prior_probs # add in similarity from the context if self.cfg.get("incl_context"): entity_encodings = xp.asarray( [c.entity_vector for c in candidates] ) entity_norm = xp.linalg.norm( entity_encodings, axis=1 ) if len(entity_encodings) != len(prior_probs): raise RuntimeError( Errors.E147.format( method="predict", msg="vectors not of equal length", ) ) # cosine similarity sims = xp.dot( entity_encodings, sentence_encoding_t ) / (sentence_norm * entity_norm) if sims.shape != prior_probs.shape: raise ValueError(Errors.E161) scores = ( prior_probs + sims - (prior_probs * sims) ) # TODO: thresholding best_index = scores.argmax().item() best_candidate = candidates[best_index] final_kb_ids.append(best_candidate.entity_) if not (len(final_kb_ids) == entity_count): err = Errors.E147.format( method="predict", msg="result variables not of equal length" ) raise RuntimeError(err) return final_kb_ids def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None: """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict. DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations """ count_ents = len([ent for doc in docs for ent in doc.ents]) if count_ents != len(kb_ids): raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids))) i = 0 for doc in docs: for ent in doc.ents: kb_id = kb_ids[i] i += 1 for token in ent: token.ent_kb_id_ = kb_id def score(self, examples, **kwargs): """Score a batch of examples. examples (Iterable[Example]): The examples to score. RETURNS (Dict[str, Any]): The scores. DOCS TODO: https://nightly.spacy.io/api/entity_linker#score """ validate_examples(examples, "EntityLinker.score") return Scorer.score_links(examples, negative_labels=[self.NIL]) def to_disk( self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList() ) -> None: """Serialize the pipe to disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://nightly.spacy.io/api/entitylinker#to_disk """ serialize = {} serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["kb"] = lambda p: self.kb.to_disk(p) serialize["model"] = lambda p: self.model.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk( self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList() ) -> "EntityLinker": """Load the pipe from disk. Modifies the object in place and returns it. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (EntityLinker): The modified EntityLinker object. DOCS: https://nightly.spacy.io/api/entitylinker#from_disk """ def load_model(p): try: self.model.from_bytes(p.open("rb").read()) except AttributeError: raise ValueError(Errors.E149) from None deserialize = {} deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) deserialize["kb"] = lambda p: self.kb.from_disk(p) deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) for s in self.kb._added_strings: self.vocab.strings.add(s) return self def rehearse(self, examples, *, sgd=None, losses=None, **config): raise NotImplementedError def add_label(self, label): raise NotImplementedError