from typing import Dict, List, Union, Optional, Sequence, Any from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool from pydantic import FilePath, DirectoryPath, root_validator from collections import defaultdict from thinc.api import Model, Optimizer from .attrs import NAMES def validate(schema, obj): """Validate data against a given pydantic schema. obj (dict): JSON-serializable data to validate. schema (pydantic.BaseModel): The schema to validate against. RETURNS (list): A list of error messages, if available. """ try: schema(**obj) return [] except ValidationError as e: errors = e.errors() data = defaultdict(list) for error in errors: err_loc = " -> ".join([str(p) for p in error.get("loc", [])]) data[err_loc].append(error.get("msg")) return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()] # Matcher token patterns def validate_token_pattern(obj): # Try to convert non-string keys (e.g. {ORTH: "foo"} -> {"ORTH": "foo"}) get_key = lambda k: NAMES[k] if isinstance(k, int) and k < len(NAMES) else k if isinstance(obj, list): converted = [] for pattern in obj: if isinstance(pattern, dict): pattern = {get_key(k): v for k, v in pattern.items()} converted.append(pattern) obj = converted return validate(TokenPatternSchema, {"pattern": obj}) class TokenPatternString(BaseModel): REGEX: Optional[StrictStr] IN: Optional[List[StrictStr]] NOT_IN: Optional[List[StrictStr]] class Config: extra = "forbid" @validator("*", pre=True, whole=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternNumber(BaseModel): REGEX: Optional[StrictStr] = None IN: Optional[List[StrictInt]] = None NOT_IN: Optional[List[StrictInt]] = None EQ: Union[StrictInt, StrictFloat] = Field(None, alias="==") NEQ: Union[StrictInt, StrictFloat] = Field(None, alias="!=") GEQ: Union[StrictInt, StrictFloat] = Field(None, alias=">=") LEQ: Union[StrictInt, StrictFloat] = Field(None, alias="<=") GT: Union[StrictInt, StrictFloat] = Field(None, alias=">") LT: Union[StrictInt, StrictFloat] = Field(None, alias="<") class Config: extra = "forbid" @validator("*", pre=True, whole=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternOperator(str, Enum): plus: StrictStr = "+" start: StrictStr = "*" question: StrictStr = "?" exclamation: StrictStr = "!" StringValue = Union[TokenPatternString, StrictStr] NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat] UnderscoreValue = Union[ TokenPatternString, TokenPatternNumber, str, int, float, list, bool, ] class TokenPattern(BaseModel): orth: Optional[StringValue] = None text: Optional[StringValue] = None lower: Optional[StringValue] = None pos: Optional[StringValue] = None tag: Optional[StringValue] = None dep: Optional[StringValue] = None lemma: Optional[StringValue] = None shape: Optional[StringValue] = None ent_type: Optional[StringValue] = None norm: Optional[StringValue] = None length: Optional[NumberValue] = None spacy: Optional[StrictBool] = None is_alpha: Optional[StrictBool] = None is_ascii: Optional[StrictBool] = None is_digit: Optional[StrictBool] = None is_lower: Optional[StrictBool] = None is_upper: Optional[StrictBool] = None is_title: Optional[StrictBool] = None is_punct: Optional[StrictBool] = None is_space: Optional[StrictBool] = None is_bracket: Optional[StrictBool] = None is_quote: Optional[StrictBool] = None is_left_punct: Optional[StrictBool] = None is_right_punct: Optional[StrictBool] = None is_currency: Optional[StrictBool] = None is_stop: Optional[StrictBool] = None is_sent_start: Optional[StrictBool] = None sent_start: Optional[StrictBool] = None like_num: Optional[StrictBool] = None like_url: Optional[StrictBool] = None like_email: Optional[StrictBool] = None op: Optional[TokenPatternOperator] = None underscore: Optional[Dict[StrictStr, UnderscoreValue]] = Field(None, alias="_") class Config: extra = "forbid" allow_population_by_field_name = True alias_generator = lambda value: value.upper() @validator("*", pre=True) def raise_for_none(cls, v): if v is None: raise ValueError("None / null is not allowed") return v class TokenPatternSchema(BaseModel): pattern: List[TokenPattern] = Field(..., minItems=1) class Config: extra = "forbid" # Model meta class ModelMetaSchema(BaseModel): # fmt: off lang: StrictStr = Field(..., title="Two-letter language code, e.g. 'en'") name: StrictStr = Field(..., title="Model name") version: StrictStr = Field(..., title="Model version") spacy_version: Optional[StrictStr] = Field(None, title="Compatible spaCy version identifier") parent_package: Optional[StrictStr] = Field("spacy", title="Name of parent spaCy package, e.g. spacy or spacy-nightly") pipeline: Optional[List[StrictStr]] = Field([], title="Names of pipeline components") description: Optional[StrictStr] = Field(None, title="Model description") license: Optional[StrictStr] = Field(None, title="Model license") author: Optional[StrictStr] = Field(None, title="Model author name") email: Optional[StrictStr] = Field(None, title="Model author email") url: Optional[StrictStr] = Field(None, title="Model author URL") sources: Optional[Union[List[StrictStr], Dict[str, str]]] = Field(None, title="Training data sources") vectors: Optional[Dict[str, Any]] = Field(None, title="Included word vectors") accuracy: Optional[Dict[str, Union[float, int]]] = Field(None, title="Accuracy numbers") speed: Optional[Dict[str, Union[float, int]]] = Field(None, title="Speed evaluation numbers") # fmt: on # JSON training format class TrainingSchema(BaseModel): # TODO: write class Config: title = "Schema for training data in spaCy's JSON format" extra = "forbid" # Config schema # We're not setting any defaults here (which is too messy) and are making all # fields required, so we can raise validation errors for missing values. To # provide a default, we include a separate .cfg file with all values and # check that against this schema in the test suite to make sure it's always # up to date. class ConfigSchemaTraining(BaseModel): # fmt: off gold_preproc: StrictBool = Field(..., title="Whether to train on gold-standard sentences and tokens") max_length: StrictInt = Field(..., title="Maximum length of examples (longer examples are divided into sentences if possible)") limit: StrictInt = Field(..., title="Number of examples to use (0 for all)") orth_variant_level: StrictFloat = Field(..., title="Orth variants for data augmentation") dropout: StrictFloat = Field(..., title="Dropout rate") patience: StrictInt = Field(..., title="How many steps to continue without improvement in evaluation score") max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for") max_steps: StrictInt = Field(..., title="Maximum number of update steps to train for") eval_frequency: StrictInt = Field(..., title="How often to evaluate during training (steps)") seed: Optional[StrictInt] = Field(..., title="Random seed") accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps") use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch") use_gpu: StrictInt = Field(..., title="GPU ID or -1 for CPU") scores: List[StrictStr] = Field(..., title="Score types to be printed in overview") score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Weights of each score type for selecting final model") init_tok2vec: Optional[FilePath] = Field(..., title="Path to pretrained tok2vec weights") discard_oversize: StrictBool = Field(..., title="Whether to skip examples longer than batch size") omit_extra_lookups: StrictBool = Field(..., title="Don't include extra lookups in model") batch_by: StrictStr = Field(..., title="Batch examples by type") raw_text: Optional[FilePath] = Field(..., title="Raw text") tag_map: Optional[FilePath] = Field(..., title="Path to JSON-formatted tag map") batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule") optimizer: Optimizer = Field(..., title="The optimizer to use") # fmt: on class Config: extra = "forbid" arbitrary_types_allowed = True class ConfigSchemaNlpComponent(BaseModel): factory: StrictStr = Field(..., title="Component factory name") model: Model = Field(..., title="Component model") # TODO: add config schema / types for components so we can fill and validate # component options like learn_tokens, min_action_freq etc. class Config: extra = "allow" arbitrary_types_allowed = True class ConfigSchemaPipeline(BaseModel): __root__: Dict[str, ConfigSchemaNlpComponent] class Config: extra = "allow" class ConfigSchemaNlp(BaseModel): lang: StrictStr = Field(..., title="The base language to use") base_model: Optional[StrictStr] = Field(..., title="The base model to use") vectors: Optional[DirectoryPath] = Field(..., title="Path to vectors") pipeline: Optional[ConfigSchemaPipeline] class Config: extra = "forbid" arbitrary_types_allowed = True class ConfigSchemaPretrain(BaseModel): # fmt: off max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for") min_length: StrictInt = Field(..., title="Minimum length of examples") max_length: StrictInt = Field(..., title="Maximum length of examples") dropout: StrictFloat = Field(..., title="Dropout rate") n_save_every: Optional[StrictInt] = Field(..., title="Saving frequency") batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule") seed: Optional[StrictInt] = Field(..., title="Random seed") use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch") tok2vec_model: StrictStr = Field(..., title="tok2vec model in config, e.g. nlp.pipeline.tok2vec.model") optimizer: Optimizer = Field(..., title="The optimizer to use") # TODO: use a more detailed schema for this? objective: Dict[str, Any] = Field(..., title="Pretraining objective") # fmt: on class Config: extra = "forbid" arbitrary_types_allowed = True class ConfigSchema(BaseModel): training: ConfigSchemaTraining nlp: ConfigSchemaNlp pretraining: Optional[ConfigSchemaPretrain] @root_validator def validate_config(cls, values): """Perform additional validation for settings with dependencies.""" pt = values.get("pretraining") if pt and pt.objective.get("type") == "vectors" and not values["nlp"].vectors: err = "Need nlp.vectors if pretraining.objective.type is vectors" raise ValueError(err) return values class Config: extra = "allow" arbitrary_types_allowed = True # Project config Schema class ProjectConfigAsset(BaseModel): # fmt: off dest: StrictStr = Field(..., title="Destination of downloaded asset") url: Optional[StrictStr] = Field(None, title="URL of asset") checksum: str = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})") # fmt: on class ProjectConfigCommand(BaseModel): # fmt: off name: StrictStr = Field(..., title="Name of command") help: Optional[StrictStr] = Field(None, title="Command description") script: List[StrictStr] = Field([], title="List of CLI commands to run, in order") deps: List[StrictStr] = Field([], title="File dependencies required by this command") outputs: List[StrictStr] = Field([], title="Outputs produced by this command") outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)") no_skip: bool = Field(False, title="Never skip this command, even if nothing changed") # fmt: on class Config: title = "A single named command specified in a project config" extra = "forbid" class ProjectConfigSchema(BaseModel): # fmt: off variables: Dict[StrictStr, Union[str, int, float, bool]] = Field({}, title="Optional variables to substitute in commands") assets: List[ProjectConfigAsset] = Field([], title="Data assets") workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order") commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts") # fmt: on class Config: title = "Schema for project configuration file"