import numpy import codecs import json import random from spacy.munge.alignment import align from libc.string cimport memset def read_json_file(loc): paragraphs = [] for doc in json.load(open(loc)): for paragraph in doc['paragraphs']: words = [] ids = [] tags = [] heads = [] labels = [] iob_ents = [] for token in paragraph['tokens']: words.append(token['orth']) ids.append(token['id']) tags.append(token['tag']) heads.append(token['head'] if token['head'] >= 0 else token['id']) labels.append(token['dep']) iob_ents.append(token.get('iob_ent', '-')) brackets = [] paragraphs.append((paragraph['raw'], (ids, words, tags, heads, labels, _iob_to_biluo(iob_ents)), paragraph.get('brackets', []))) return paragraphs def _iob_to_biluo(tags): out = [] curr_label = None tags = list(tags) while tags: out.extend(_consume_os(tags)) out.extend(_consume_ent(tags)) return out def _consume_os(tags): while tags and tags[0] == 'O': yield tags.pop(0) def _consume_ent(tags): if not tags: return [] target = tags.pop(0).replace('B', 'I') length = 1 while tags and tags[0] == target: length += 1 tags.pop(0) label = target[2:] if length == 1: return ['U-' + label] else: start = 'B-' + label end = 'L-' + label middle = ['I-%s' % label for _ in range(1, length - 1)] return [start] + middle + [end] cdef class GoldParse: def __init__(self, tokens, annot_tuples, brackets=tuple()): self.mem = Pool() self.loss = 0 self.length = len(tokens) # These are filled by the tagger/parser/entity recogniser self.c_tags = self.mem.alloc(len(tokens), sizeof(int)) self.c_heads = self.mem.alloc(len(tokens), sizeof(int)) self.c_labels = self.mem.alloc(len(tokens), sizeof(int)) self.c_ner = self.mem.alloc(len(tokens), sizeof(Transition)) self.c_brackets = self.mem.alloc(len(tokens), sizeof(int*)) for i in range(len(tokens)): self.c_brackets[i] = self.mem.alloc(len(tokens), sizeof(int)) self.tags = [None] * len(tokens) self.heads = [None] * len(tokens) self.labels = [''] * len(tokens) self.ner = ['-'] * len(tokens) self.cand_to_gold = align([t.orth_ for t in tokens], annot_tuples[1]) self.gold_to_cand = align(annot_tuples[1], [t.orth_ for t in tokens]) self.orig_annot = zip(*annot_tuples) self.ents = [] for i, gold_i in enumerate(self.cand_to_gold): if gold_i is None: # TODO: What do we do for missing values again? pass else: self.tags[i] = annot_tuples[2][gold_i] self.heads[i] = self.gold_to_cand[annot_tuples[3][gold_i]] self.labels[i] = annot_tuples[4][gold_i] # TODO: Declare NER information MISSING if tokenization incorrect for start, end, label in self.ents: if start == (end - 1): self.ner[start] = 'U-%s' % label else: self.ner[start] = 'B-%s' % label for i in range(start+1, end-1): self.ner[i] = 'I-%s' % label self.ner[end-1] = 'L-%s' % label self.brackets = {} for (gold_start, gold_end, label_str) in brackets: start = self.gold_to_cand[gold_start] end = self.gold_to_cand[gold_end] if start is not None and end is not None: self.brackets.setdefault(start, {}).setdefault(end, set()) self.brackets[end][start].add(label) def __len__(self): return self.length def is_punct_label(label): return label == 'P' or label.lower() == 'punct'