# cython: embedsignature=True from cython.view cimport array as cvarray from preshed.maps cimport PreshMap from preshed.counter cimport PreshCounter from .vocab cimport EMPTY_LEXEME from .typedefs cimport attr_id_t, attr_t from .typedefs cimport LEMMA from .typedefs cimport ID, ORTH, NORM1, NORM2, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER from .typedefs cimport POS, LEMMA from unidecode import unidecode cimport numpy import numpy cimport cython DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil: if feat_name == LEMMA: return token.lemma elif feat_name == POS: return token.pos else: return get_lex_attr(token.lex, feat_name) cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil: if feat_name < (sizeof(flags_t) * 8): return check_flag(lex, feat_name) elif feat_name == ID: return lex.id elif feat_name == ORTH: return lex.orth elif feat_name == NORM1: return lex.norm1 elif feat_name == NORM2: return lex.norm2 elif feat_name == SHAPE: return lex.shape elif feat_name == PREFIX: return lex.prefix elif feat_name == SUFFIX: return lex.suffix elif feat_name == LENGTH: return lex.length elif feat_name == CLUSTER: return lex.cluster else: return 0 cdef class Tokens: """Access and set annotations onto some text. """ def __init__(self, Vocab vocab, unicode string): self.vocab = vocab self._string = string string_length = len(string) if string_length >= 3: size = int(string_length / 3.0) else: size = 5 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME self.data = data_start + PADDING self.max_length = size self.length = 0 def sentences(self): cdef int i sentences = [] cdef Tokens sent = Tokens(self.vocab, self._string[self.data[0].idx:]) cdef attr_t period = self.vocab.strings['.'] cdef attr_t question = self.vocab.strings['?'] cdef attr_t exclamation = self.vocab.strings['!'] spans = [] start = None for i in range(self.length): if start is None: start = i if self.data[i].lex.orth == period or self.data[i].lex.orth == exclamation or \ self.data[i].lex.orth == question: spans.append((start, i+1)) start = None if start is not None: spans.append((start, self.length)) return spans def __getitem__(self, i): """Retrieve a token. Returns: token (Token): """ if i < 0: i = self.length - i bounds_check(i, self.length, PADDING) return Token(self, i) def __iter__(self): """Iterate over the tokens. Yields: token (Token): """ for i in range(self.length): yield self[i] def __len__(self): return self.length def __unicode__(self): cdef const TokenC* last = &self.data[self.length - 1] return self._string[:last.idx + last.lex.length] def __str__(self): return unidecode(unicode(self)) cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1: if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.data[self.length] if LexemeOrToken is TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok t.idx = idx self.length += 1 return idx + t.lex.length @cython.boundscheck(False) cpdef long[:,:] to_array(self, object attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy ndarray of shape N*M, where N is the length of the sentence. Arguments: attr_ids (list[int]): A list of attribute ID ints. Returns: feat_array (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input attr_ids. """ cdef int i, j cdef attr_id_t feature cdef long[:,:] output = cvarray(shape=(self.length, len(attr_ids)), itemsize=sizeof(long), format="l") for i in range(self.length): for j, feature in enumerate(attr_ids): output[i, j] = get_token_attr(&self.data[i], feature) return output def count_by(self, attr_id_t attr_id, exclude=None): """Produce a dict of {attribute (int): count (ints)} frequencies, keyed by the values of the given attribute ID. >>> from spacy.en import English, attrs >>> nlp = English() >>> tokens = nlp(u'apple apple orange banana') >>> tokens.count_by(attrs.ORTH) {12800L: 1, 11880L: 2, 7561L: 1} >>> tokens.to_array([attrs.ORTH]) array([[11880], [11880], [ 7561], [12800]]) """ cdef int i cdef attr_t attr cdef size_t count cdef PreshCounter counts = PreshCounter(2 ** 8) for i in range(self.length): if exclude is not None and exclude(self[i]): continue attr = get_token_attr(&self.data[i], attr_id) counts.inc(attr, 1) return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.data - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.data = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.data[i].lex = &EMPTY_LEXEME @cython.freelist(64) cdef class Token: """An individual token.""" def __init__(self, Tokens tokens, int i): self._seq = tokens self.i = i cdef const TokenC* t = &tokens.data[i] self.idx = t.idx self.cluster = t.lex.cluster self.length = t.lex.length self.orth = t.lex.orth self.norm1 = t.lex.norm1 self.norm2 = t.lex.norm2 self.shape = t.lex.shape self.prefix = t.lex.prefix self.suffix = t.lex.suffix self.prob = t.lex.prob self.sentiment = t.lex.sentiment self.flags = t.lex.flags self.lemma = t.lemma self.tag = t.tag self.dep = t.dep self.repvec = numpy.asarray( t.lex.repvec) def __unicode__(self): cdef const TokenC* t = &self._seq.data[self.i] cdef int end_idx = t.idx + t.lex.length if self.i + 1 == self._seq.length: return self.string if end_idx == t[1].idx: return self.string else: return self.string + ' ' def __len__(self): """The number of unicode code-points in the original string. Returns: length (int): """ return self._seq.data[self.i].lex.length def check_flag(self, attr_id_t flag): return self.flags & (1 << flag) def is_pos(self, univ_tag_t pos): return self.tag == pos property head: """The token predicted by the parser to be the head of the current token.""" def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] return Token(self._seq, self.i + t.head) property string: """The unicode string of the word, with no whitespace padding.""" def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] if t.lex.orth == 0: return '' cdef unicode py_ustr = self._seq.vocab.strings[t.lex.orth] return py_ustr property orth_: def __get__(self): return self._seq.vocab.strings[self.orth] property norm1_: def __get__(self): return self._seq.vocab.strings[self.norm1] property norm2_: def __get__(self): return self._seq.vocab.strings[self.norm2] property shape_: def __get__(self): return self._seq.vocab.strings[self.shape] property prefix_: def __get__(self): return self._seq.vocab.strings[self.prefix] property suffix_: def __get__(self): return self._seq.vocab.strings[self.suffix] property lemma_: def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] if t.lemma == 0: return self.string cdef unicode py_ustr = self._seq.vocab.strings[t.lemma] return py_ustr property tag_: def __get__(self): return self._seq.tag_names[self.tag] property dep_: def __get__(self): return self._seq.dep_names[self.dep]