# cython: infer_types=True # coding: utf8 from __future__ import unicode_literals from libc.string cimport memcpy from cpython.mem cimport PyMem_Malloc, PyMem_Free # Compiler crashes on memory view coercion without this. Should report bug. from cython.view cimport array as cvarray cimport numpy as np np.import_array() import numpy from thinc.neural.util import get_array_module from ..typedefs cimport hash_t from ..lexeme cimport Lexeme from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP from ..symbols cimport conj from .. import parts_of_speech from .. import util from ..compat import is_config from ..errors import Errors, Warnings, user_warning, models_warning from .underscore import Underscore, get_ext_args cdef class Token: """An individual token – i.e. a word, punctuation symbol, whitespace, etc. DOCS: https://spacy.io/api/token """ @classmethod def set_extension(cls, name, **kwargs): """Define a custom attribute which becomes available as `Token._`. name (unicode): Name of the attribute to set. default: Optional default value of the attribute. getter (callable): Optional getter function. setter (callable): Optional setter function. method (callable): Optional method for method extension. force (bool): Force overwriting existing attribute. DOCS: https://spacy.io/api/token#set_extension USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes """ if cls.has_extension(name) and not kwargs.get("force", False): raise ValueError(Errors.E090.format(name=name, obj="Token")) Underscore.token_extensions[name] = get_ext_args(**kwargs) @classmethod def get_extension(cls, name): """Look up a previously registered extension by name. name (unicode): Name of the extension. RETURNS (tuple): A `(default, method, getter, setter)` tuple. DOCS: https://spacy.io/api/token#get_extension """ return Underscore.token_extensions.get(name) @classmethod def has_extension(cls, name): """Check whether an extension has been registered. name (unicode): Name of the extension. RETURNS (bool): Whether the extension has been registered. DOCS: https://spacy.io/api/token#has_extension """ return name in Underscore.token_extensions @classmethod def remove_extension(cls, name): """Remove a previously registered extension. name (unicode): Name of the extension. RETURNS (tuple): A `(default, method, getter, setter)` tuple of the removed extension. DOCS: https://spacy.io/api/token#remove_extension """ if not cls.has_extension(name): raise ValueError(Errors.E046.format(name=name)) return Underscore.token_extensions.pop(name) def __cinit__(self, Vocab vocab, Doc doc, int offset): """Construct a `Token` object. vocab (Vocab): A storage container for lexical types. doc (Doc): The parent document. offset (int): The index of the token within the document. DOCS: https://spacy.io/api/token#init """ self.vocab = vocab self.doc = doc self.c = &self.doc.c[offset] self.i = offset def __hash__(self): return hash((self.doc, self.i)) def __len__(self): """The number of unicode characters in the token, i.e. `token.text`. RETURNS (int): The number of unicode characters in the token. DOCS: https://spacy.io/api/token#len """ return self.c.lex.length def __unicode__(self): return self.text def __bytes__(self): return self.text.encode('utf8') def __str__(self): if is_config(python3=True): return self.__unicode__() return self.__bytes__() def __repr__(self): return self.__str__() def __richcmp__(self, Token other, int op): # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html if other is None: if op in (0, 1, 2): return False else: return True cdef Doc my_doc = self.doc cdef Doc other_doc = other.doc my = self.idx their = other.idx if op == 0: return my < their elif op == 2: if my_doc is other_doc: return my == their else: return False elif op == 4: return my > their elif op == 1: return my <= their elif op == 3: if my_doc is other_doc: return my != their else: return True elif op == 5: return my >= their else: raise ValueError(Errors.E041.format(op=op)) def __reduce__(self): raise NotImplementedError(Errors.E111) @property def _(self): """Custom extension attributes registered via `set_extension`.""" return Underscore(Underscore.token_extensions, self, start=self.idx, end=None) cpdef bint check_flag(self, attr_id_t flag_id) except -1: """Check the value of a boolean flag. flag_id (int): The ID of the flag attribute. RETURNS (bool): Whether the flag is set. DOCS: https://spacy.io/api/token#check_flag """ return Lexeme.c_check_flag(self.c.lex, flag_id) def nbor(self, int i=1): """Get a neighboring token. i (int): The relative position of the token to get. Defaults to 1. RETURNS (Token): The token at position `self.doc[self.i+i]`. DOCS: https://spacy.io/api/token#nbor """ if self.i+i < 0 or (self.i+i >= len(self.doc)): raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc))) return self.doc[self.i+i] def similarity(self, other): """Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. other (object): The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. RETURNS (float): A scalar similarity score. Higher is more similar. DOCS: https://spacy.io/api/token#similarity """ if "similarity" in self.doc.user_token_hooks: return self.doc.user_token_hooks["similarity"](self) if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"): if self.c.lex.orth == getattr(other[0], "orth", None): return 1.0 elif hasattr(other, "orth"): if self.c.lex.orth == other.orth: return 1.0 if self.vocab.vectors.n_keys == 0: models_warning(Warnings.W007.format(obj="Token")) if self.vector_norm == 0 or other.vector_norm == 0: user_warning(Warnings.W008.format(obj="Token")) return 0.0 vector = self.vector xp = get_array_module(vector) return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) @property def lex_id(self): """RETURNS (int): Sequential ID of the token's lexical type.""" return self.c.lex.id @property def rank(self): """RETURNS (int): Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors.""" return self.c.lex.id @property def string(self): """Deprecated: Use Token.text_with_ws instead.""" return self.text_with_ws @property def text(self): """RETURNS (unicode): The original verbatim text of the token.""" return self.orth_ @property def text_with_ws(self): """RETURNS (unicode): The text content of the span (with trailing whitespace). """ cdef unicode orth = self.vocab.strings[self.c.lex.orth] if self.c.spacy: return orth + " " else: return orth @property def prob(self): """RETURNS (float): Smoothed log probability estimate of token type.""" return self.c.lex.prob @property def sentiment(self): """RETURNS (float): A scalar value indicating the positivity or negativity of the token.""" if "sentiment" in self.doc.user_token_hooks: return self.doc.user_token_hooks["sentiment"](self) return self.c.lex.sentiment @property def lang(self): """RETURNS (uint64): ID of the language of the parent document's vocabulary. """ return self.c.lex.lang @property def idx(self): """RETURNS (int): The character offset of the token within the parent document. """ return self.c.idx @property def cluster(self): """RETURNS (int): Brown cluster ID.""" return self.c.lex.cluster @property def orth(self): """RETURNS (uint64): ID of the verbatim text content.""" return self.c.lex.orth @property def lower(self): """RETURNS (uint64): ID of the lowercase token text.""" return self.c.lex.lower @property def norm(self): """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of the token text. Usually set in the language's tokenizer exceptions or norm exceptions. """ if self.c.norm == 0: return self.c.lex.norm else: return self.c.norm @property def shape(self): """RETURNS (uint64): ID of the token's shape, a transform of the tokens's string, to show orthographic features (e.g. "Xxxx", "dd"). """ return self.c.lex.shape @property def prefix(self): """RETURNS (uint64): ID of a length-N substring from the start of the token. Defaults to `N=1`. """ return self.c.lex.prefix @property def suffix(self): """RETURNS (uint64): ID of a length-N substring from the end of the token. Defaults to `N=3`. """ return self.c.lex.suffix property lemma: """RETURNS (uint64): ID of the base form of the word, with no inflectional suffixes. """ def __get__(self): if self.c.lemma == 0: lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_) return self.vocab.strings[lemma_] else: return self.c.lemma def __set__(self, attr_t lemma): self.c.lemma = lemma property pos: """RETURNS (uint64): ID of coarse-grained part-of-speech tag.""" def __get__(self): return self.c.pos def __set__(self, pos): self.c.pos = pos property tag: """RETURNS (uint64): ID of fine-grained part-of-speech tag.""" def __get__(self): return self.c.tag def __set__(self, attr_t tag): self.vocab.morphology.assign_tag(self.c, tag) property dep: """RETURNS (uint64): ID of syntactic dependency label.""" def __get__(self): return self.c.dep def __set__(self, attr_t label): self.c.dep = label @property def has_vector(self): """A boolean value indicating whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object. DOCS: https://spacy.io/api/token#has_vector """ if "has_vector" in self.doc.user_token_hooks: return self.doc.user_token_hooks["has_vector"](self) if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: return True return self.vocab.has_vector(self.c.lex.orth) @property def vector(self): """A real-valued meaning representation. RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array representing the token's semantics. DOCS: https://spacy.io/api/token#vector """ if "vector" in self.doc.user_token_hooks: return self.doc.user_token_hooks["vector"](self) if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: return self.doc.tensor[self.i] else: return self.vocab.get_vector(self.c.lex.orth) @property def vector_norm(self): """The L2 norm of the token's vector representation. RETURNS (float): The L2 norm of the vector representation. DOCS: https://spacy.io/api/token#vector_norm """ if "vector_norm" in self.doc.user_token_hooks: return self.doc.user_token_hooks["vector_norm"](self) vector = self.vector xp = get_array_module(vector) total = (vector ** 2).sum() return xp.sqrt(total) if total != 0. else 0. @property def n_lefts(self): """The number of leftward immediate children of the word, in the syntactic dependency parse. RETURNS (int): The number of leftward immediate children of the word, in the syntactic dependency parse. DOCS: https://spacy.io/api/token#n_lefts """ return self.c.l_kids @property def n_rights(self): """The number of rightward immediate children of the word, in the syntactic dependency parse. RETURNS (int): The number of rightward immediate children of the word, in the syntactic dependency parse. DOCS: https://spacy.io/api/token#n_rights """ return self.c.r_kids @property def sent(self): """RETURNS (Span): The sentence span that the token is a part of.""" if 'sent' in self.doc.user_token_hooks: return self.doc.user_token_hooks["sent"](self) return self.doc[self.i : self.i+1].sent property sent_start: def __get__(self): """Deprecated: use Token.is_sent_start instead.""" # Raising a deprecation warning here causes errors for autocomplete # Handle broken backwards compatibility case: doc[0].sent_start # was False. if self.i == 0: return False else: return self.c.sent_start def __set__(self, value): self.is_sent_start = value property is_sent_start: """A boolean value indicating whether the token starts a sentence. `None` if unknown. Defaults to `True` for the first token in the `Doc`. RETURNS (bool / None): Whether the token starts a sentence. None if unknown. DOCS: https://spacy.io/api/token#is_sent_start """ def __get__(self): if self.c.sent_start == 0: return None elif self.c.sent_start < 0: return False else: return True def __set__(self, value): if self.doc.is_parsed: raise ValueError(Errors.E043) if value is None: self.c.sent_start = 0 elif value is True: self.c.sent_start = 1 elif value is False: self.c.sent_start = -1 else: raise ValueError(Errors.E044.format(value=value)) @property def lefts(self): """The leftward immediate children of the word, in the syntactic dependency parse. YIELDS (Token): A left-child of the token. DOCS: https://spacy.io/api/token#lefts """ cdef int nr_iter = 0 cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge) while ptr < self.c: if ptr + ptr.head == self.c: yield self.doc[ptr - (self.c - self.i)] ptr += 1 nr_iter += 1 # This is ugly, but it's a way to guard out infinite loops if nr_iter >= 10000000: raise RuntimeError(Errors.E045.format(attr="token.lefts")) @property def rights(self): """The rightward immediate children of the word, in the syntactic dependency parse. YIELDS (Token): A right-child of the token. DOCS: https://spacy.io/api/token#rights """ cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i) tokens = [] cdef int nr_iter = 0 while ptr > self.c: if ptr + ptr.head == self.c: tokens.append(self.doc[ptr - (self.c - self.i)]) ptr -= 1 nr_iter += 1 if nr_iter >= 10000000: raise RuntimeError(Errors.E045.format(attr="token.rights")) tokens.reverse() for t in tokens: yield t @property def children(self): """A sequence of the token's immediate syntactic children. YIELDS (Token): A child token such that `child.head==self`. DOCS: https://spacy.io/api/token#children """ yield from self.lefts yield from self.rights @property def subtree(self): """A sequence containing the token and all the token's syntactic descendants. YIELDS (Token): A descendent token such that `self.is_ancestor(descendent) or token == self`. DOCS: https://spacy.io/api/token#subtree """ for word in self.lefts: yield from word.subtree yield self for word in self.rights: yield from word.subtree @property def left_edge(self): """The leftmost token of this token's syntactic descendents. RETURNS (Token): The first token such that `self.is_ancestor(token)`. """ return self.doc[self.c.l_edge] @property def right_edge(self): """The rightmost token of this token's syntactic descendents. RETURNS (Token): The last token such that `self.is_ancestor(token)`. """ return self.doc[self.c.r_edge] @property def ancestors(self): """A sequence of this token's syntactic ancestors. YIELDS (Token): A sequence of ancestor tokens such that `ancestor.is_ancestor(self)`. DOCS: https://spacy.io/api/token#ancestors """ cdef const TokenC* head_ptr = self.c # Guard against infinite loop, no token can have # more ancestors than tokens in the tree. cdef int i = 0 while head_ptr.head != 0 and i < self.doc.length: head_ptr += head_ptr.head yield self.doc[head_ptr - (self.c - self.i)] i += 1 def is_ancestor(self, descendant): """Check whether this token is a parent, grandparent, etc. of another in the dependency tree. descendant (Token): Another token. RETURNS (bool): Whether this token is the ancestor of the descendant. DOCS: https://spacy.io/api/token#is_ancestor """ if self.doc is not descendant.doc: return False return any(ancestor.i == self.i for ancestor in descendant.ancestors) property head: """The syntactic parent, or "governor", of this token. RETURNS (Token): The token predicted by the parser to be the head of the current token. """ def __get__(self): return self.doc[self.i + self.c.head] def __set__(self, Token new_head): # This function sets the head of self to new_head and updates the # counters for left/right dependents and left/right corner for the # new and the old head # Do nothing if old head is new head if self.i + self.c.head == new_head.i: return cdef Token old_head = self.head cdef int rel_newhead_i = new_head.i - self.i # Is the new head a descendant of the old head cdef bint is_desc = old_head.is_ancestor(new_head) cdef int new_edge cdef Token anc, child # Update number of deps of old head if self.c.head > 0: # left dependent old_head.c.l_kids -= 1 if self.c.l_edge == old_head.c.l_edge: # The token dominates the left edge so the left edge of # the head may change when the token is reattached, it may # not change if the new head is a descendant of the current # head. new_edge = self.c.l_edge # The new l_edge is the left-most l_edge on any of the # other dependents where the l_edge is left of the head, # otherwise it is the head if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.l_edge < new_edge: new_edge = child.c.l_edge old_head.c.l_edge = new_edge # Walk up the tree from old_head and assign new l_edge to # ancestors until an ancestor already has an l_edge that's # further left for anc in old_head.ancestors: if anc.c.l_edge <= new_edge: break anc.c.l_edge = new_edge elif self.c.head < 0: # right dependent old_head.c.r_kids -= 1 # Do the same thing as for l_edge if self.c.r_edge == old_head.c.r_edge: new_edge = self.c.r_edge if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.r_edge > new_edge: new_edge = child.c.r_edge old_head.c.r_edge = new_edge for anc in old_head.ancestors: if anc.c.r_edge >= new_edge: break anc.c.r_edge = new_edge # Update number of deps of new head if rel_newhead_i > 0: # left dependent new_head.c.l_kids += 1 # Walk up the tree from new head and set l_edge to self.l_edge # until you hit a token with an l_edge further to the left if self.c.l_edge < new_head.c.l_edge: new_head.c.l_edge = self.c.l_edge for anc in new_head.ancestors: if anc.c.l_edge <= self.c.l_edge: break anc.c.l_edge = self.c.l_edge elif rel_newhead_i < 0: # right dependent new_head.c.r_kids += 1 # Do the same as for l_edge if self.c.r_edge > new_head.c.r_edge: new_head.c.r_edge = self.c.r_edge for anc in new_head.ancestors: if anc.c.r_edge >= self.c.r_edge: break anc.c.r_edge = self.c.r_edge # Set new head self.c.head = rel_newhead_i @property def conjuncts(self): """A sequence of coordinated tokens, including the token itself. RETURNS (tuple): The coordinated tokens. DOCS: https://spacy.io/api/token#conjuncts """ cdef Token word, child if "conjuncts" in self.doc.user_token_hooks: return tuple(self.doc.user_token_hooks["conjuncts"](self)) start = self while start.i != start.head.i: if start.dep == conj: start = start.head else: break queue = [start] output = [start] for word in queue: for child in word.rights: if child.c.dep == conj: output.append(child) queue.append(child) return tuple([w for w in output if w.i != self.i]) property ent_type: """RETURNS (uint64): Named entity type.""" def __get__(self): return self.c.ent_type def __set__(self, ent_type): self.c.ent_type = ent_type property ent_type_: """RETURNS (unicode): Named entity type.""" def __get__(self): return self.vocab.strings[self.c.ent_type] def __set__(self, ent_type): self.c.ent_type = self.vocab.strings.add(ent_type) @property def ent_iob(self): """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag is assigned. RETURNS (uint64): IOB code of named entity tag. """ return self.c.ent_iob @property def ent_iob_(self): """IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. RETURNS (unicode): IOB code of named entity tag. """ iob_strings = ("", "I", "O", "B") return iob_strings[self.c.ent_iob] property ent_id: """RETURNS (uint64): ID of the entity the token is an instance of, if any. """ def __get__(self): return self.c.ent_id def __set__(self, hash_t key): self.c.ent_id = key property ent_id_: """RETURNS (unicode): ID of the entity the token is an instance of, if any. """ def __get__(self): return self.vocab.strings[self.c.ent_id] def __set__(self, name): self.c.ent_id = self.vocab.strings.add(name) @property def whitespace_(self): """RETURNS (unicode): The trailing whitespace character, if present.""" return " " if self.c.spacy else "" @property def orth_(self): """RETURNS (unicode): Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. """ return self.vocab.strings[self.c.lex.orth] @property def lower_(self): """RETURNS (unicode): The lowercase token text. Equivalent to `Token.text.lower()`. """ return self.vocab.strings[self.c.lex.lower] property norm_: """RETURNS (unicode): The token's norm, i.e. a normalised form of the token text. Usually set in the language's tokenizer exceptions or norm exceptions. """ def __get__(self): return self.vocab.strings[self.norm] def __set__(self, unicode norm_): self.c.norm = self.vocab.strings.add(norm_) @property def shape_(self): """RETURNS (unicode): Transform of the tokens's string, to show orthographic features. For example, "Xxxx" or "dd". """ return self.vocab.strings[self.c.lex.shape] @property def prefix_(self): """RETURNS (unicode): A length-N substring from the start of the token. Defaults to `N=1`. """ return self.vocab.strings[self.c.lex.prefix] @property def suffix_(self): """RETURNS (unicode): A length-N substring from the end of the token. Defaults to `N=3`. """ return self.vocab.strings[self.c.lex.suffix] @property def lang_(self): """RETURNS (unicode): Language of the parent document's vocabulary, e.g. 'en'. """ return self.vocab.strings[self.c.lex.lang] property lemma_: """RETURNS (unicode): The token lemma, i.e. the base form of the word, with no inflectional suffixes. """ def __get__(self): if self.c.lemma == 0: return self.vocab.morphology.lemmatizer.lookup(self.orth_) else: return self.vocab.strings[self.c.lemma] def __set__(self, unicode lemma_): self.c.lemma = self.vocab.strings.add(lemma_) property pos_: """RETURNS (unicode): Coarse-grained part-of-speech tag.""" def __get__(self): return parts_of_speech.NAMES[self.c.pos] def __set__(self, pos_name): self.c.pos = parts_of_speech.IDS[pos_name] property tag_: """RETURNS (unicode): Fine-grained part-of-speech tag.""" def __get__(self): return self.vocab.strings[self.c.tag] def __set__(self, tag): self.tag = self.vocab.strings.add(tag) property dep_: """RETURNS (unicode): The syntactic dependency label.""" def __get__(self): return self.vocab.strings[self.c.dep] def __set__(self, unicode label): self.c.dep = self.vocab.strings.add(label) @property def is_oov(self): """RETURNS (bool): Whether the token is out-of-vocabulary.""" return Lexeme.c_check_flag(self.c.lex, IS_OOV) @property def is_stop(self): """RETURNS (bool): Whether the token is a stop word, i.e. part of a "stop list" defined by the language data. """ return Lexeme.c_check_flag(self.c.lex, IS_STOP) @property def is_alpha(self): """RETURNS (bool): Whether the token consists of alpha characters. Equivalent to `token.text.isalpha()`. """ return Lexeme.c_check_flag(self.c.lex, IS_ALPHA) @property def is_ascii(self): """RETURNS (bool): Whether the token consists of ASCII characters. Equivalent to `[any(ord(c) >= 128 for c in token.text)]`. """ return Lexeme.c_check_flag(self.c.lex, IS_ASCII) @property def is_digit(self): """RETURNS (bool): Whether the token consists of digits. Equivalent to `token.text.isdigit()`. """ return Lexeme.c_check_flag(self.c.lex, IS_DIGIT) @property def is_lower(self): """RETURNS (bool): Whether the token is in lowercase. Equivalent to `token.text.islower()`. """ return Lexeme.c_check_flag(self.c.lex, IS_LOWER) @property def is_upper(self): """RETURNS (bool): Whether the token is in uppercase. Equivalent to `token.text.isupper()` """ return Lexeme.c_check_flag(self.c.lex, IS_UPPER) @property def is_title(self): """RETURNS (bool): Whether the token is in titlecase. Equivalent to `token.text.istitle()`. """ return Lexeme.c_check_flag(self.c.lex, IS_TITLE) @property def is_punct(self): """RETURNS (bool): Whether the token is punctuation.""" return Lexeme.c_check_flag(self.c.lex, IS_PUNCT) @property def is_space(self): """RETURNS (bool): Whether the token consists of whitespace characters. Equivalent to `token.text.isspace()`. """ return Lexeme.c_check_flag(self.c.lex, IS_SPACE) @property def is_bracket(self): """RETURNS (bool): Whether the token is a bracket.""" return Lexeme.c_check_flag(self.c.lex, IS_BRACKET) @property def is_quote(self): """RETURNS (bool): Whether the token is a quotation mark.""" return Lexeme.c_check_flag(self.c.lex, IS_QUOTE) @property def is_left_punct(self): """RETURNS (bool): Whether the token is a left punctuation mark.""" return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT) @property def is_right_punct(self): """RETURNS (bool): Whether the token is a right punctuation mark.""" return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT) @property def is_currency(self): """RETURNS (bool): Whether the token is a currency symbol.""" return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY) @property def like_url(self): """RETURNS (bool): Whether the token resembles a URL.""" return Lexeme.c_check_flag(self.c.lex, LIKE_URL) @property def like_num(self): """RETURNS (bool): Whether the token resembles a number, e.g. "10.9", "10", "ten", etc. """ return Lexeme.c_check_flag(self.c.lex, LIKE_NUM) @property def like_email(self): """RETURNS (bool): Whether the token resembles an email address.""" return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)