# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON from ...errors import Errors def noun_chunks(doclike): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ # Please see documentation for Turkish NP structure labels = [ "nsubj", "iobj", "obj", "obl", "appos", "orphan", "dislocated", "ROOT", ] doc = doclike.doc # Ensure works on both Doc and Span. if not doc.has_annotation("DEP"): raise ValueError(Errors.E029) np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") flat = doc.vocab.strings.add("flat") np_label = doc.vocab.strings.add("NP") def extend_right(w): # Playing a trick for flat rindex = w.i + 1 for rdep in doc[w.i].rights: # Extend the span to right if there is a flat if rdep.dep == flat and rdep.pos in (NOUN, PROPN): rindex = rdep.i + 1 else: break return rindex prev_end = len(doc) + 1 for i, word in reversed(list(enumerate(doclike))): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i >= prev_end: continue if word.dep in np_deps: prev_end = word.left_edge.i yield word.left_edge.i, extend_right(word), np_label elif word.dep == conj: cc_token = word.left_edge prev_end = cc_token.i yield cc_token.right_edge.i + 1, extend_right(word), np_label # Shave off cc tokens from the NP SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}