# coding: utf-8 from __future__ import unicode_literals import pytest import random from spacy.matcher import Matcher from spacy.attrs import IS_PUNCT, ORTH, LOWER from spacy.symbols import POS, VERB, VerbForm_inf from spacy.vocab import Vocab from spacy.language import Language from spacy.lemmatizer import Lemmatizer from spacy.tokens import Doc from ..util import get_doc, make_tempdir @pytest.mark.parametrize( "patterns", [ [[{"LOWER": "celtics"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "celtics"}]], ], ) def test_issue118(en_tokenizer, patterns): """Test a bug that arose from having overlapping matches""" text = ( "how many points did lebron james score against the boston celtics last night" ) doc = en_tokenizer(text) ORG = doc.vocab.strings["ORG"] matcher = Matcher(doc.vocab) matcher.add("BostonCeltics", None, *patterns) assert len(list(doc.ents)) == 0 matches = [(ORG, start, end) for _, start, end in matcher(doc)] assert matches == [(ORG, 9, 11), (ORG, 10, 11)] doc.ents = matches[:1] ents = list(doc.ents) assert len(ents) == 1 assert ents[0].label == ORG assert ents[0].start == 9 assert ents[0].end == 11 @pytest.mark.parametrize( "patterns", [ [[{"LOWER": "boston"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "boston"}]], ], ) def test_issue118_prefix_reorder(en_tokenizer, patterns): """Test a bug that arose from having overlapping matches""" text = ( "how many points did lebron james score against the boston celtics last night" ) doc = en_tokenizer(text) ORG = doc.vocab.strings["ORG"] matcher = Matcher(doc.vocab) matcher.add("BostonCeltics", None, *patterns) assert len(list(doc.ents)) == 0 matches = [(ORG, start, end) for _, start, end in matcher(doc)] doc.ents += tuple(matches)[1:] assert matches == [(ORG, 9, 10), (ORG, 9, 11)] ents = doc.ents assert len(ents) == 1 assert ents[0].label == ORG assert ents[0].start == 9 assert ents[0].end == 11 def test_issue242(en_tokenizer): """Test overlapping multi-word phrases.""" text = "There are different food safety standards in different countries." patterns = [ [{"LOWER": "food"}, {"LOWER": "safety"}], [{"LOWER": "safety"}, {"LOWER": "standards"}], ] doc = en_tokenizer(text) matcher = Matcher(doc.vocab) matcher.add("FOOD", None, *patterns) matches = [(ent_type, start, end) for ent_type, start, end in matcher(doc)] doc.ents += tuple(matches) match1, match2 = matches assert match1[1] == 3 assert match1[2] == 5 assert match2[1] == 4 assert match2[2] == 6 def test_issue309(en_tokenizer): """Test Issue #309: SBD fails on empty string""" tokens = en_tokenizer(" ") doc = get_doc( tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"] ) doc.is_parsed = True assert len(doc) == 1 sents = list(doc.sents) assert len(sents) == 1 def test_issue351(en_tokenizer): doc = en_tokenizer(" This is a cat.") assert doc[0].idx == 0 assert len(doc[0]) == 3 assert doc[1].idx == 3 def test_issue360(en_tokenizer): """Test tokenization of big ellipsis""" tokens = en_tokenizer("$45...............Asking") assert len(tokens) > 2 @pytest.mark.parametrize("text1,text2", [("cat", "dog")]) def test_issue361(en_vocab, text1, text2): """Test Issue #361: Equality of lexemes""" assert en_vocab[text1] == en_vocab[text1] assert en_vocab[text1] != en_vocab[text2] def test_issue587(en_tokenizer): """Test that Matcher doesn't segfault on particular input""" doc = en_tokenizer("a b; c") matcher = Matcher(doc.vocab) matcher.add("TEST1", None, [{ORTH: "a"}, {ORTH: "b"}]) matches = matcher(doc) assert len(matches) == 1 matcher.add( "TEST2", None, [{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "c"}] ) matches = matcher(doc) assert len(matches) == 2 matcher.add( "TEST3", None, [{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "d"}] ) matches = matcher(doc) assert len(matches) == 2 def test_issue588(en_vocab): matcher = Matcher(en_vocab) with pytest.raises(ValueError): matcher.add("TEST", None, []) @pytest.mark.xfail def test_issue589(): vocab = Vocab() vocab.strings.set_frozen(True) doc = Doc(vocab, words=["whata"]) def test_issue590(en_vocab): """Test overlapping matches""" doc = Doc(en_vocab, words=["n", "=", "1", ";", "a", ":", "5", "%"]) matcher = Matcher(en_vocab) matcher.add( "ab", None, [{"IS_ALPHA": True}, {"ORTH": ":"}, {"LIKE_NUM": True}, {"ORTH": "%"}], ) matcher.add("ab", None, [{"IS_ALPHA": True}, {"ORTH": "="}, {"LIKE_NUM": True}]) matches = matcher(doc) assert len(matches) == 2 def test_issue595(): """Test lemmatization of base forms""" words = ["Do", "n't", "feed", "the", "dog"] tag_map = {"VB": {POS: VERB, VerbForm_inf: True}} rules = {"verb": [["ed", "e"]]} lemmatizer = Lemmatizer({"verb": {}}, {"verb": {}}, rules) vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map) doc = Doc(vocab, words=words) doc[2].tag_ = "VB" assert doc[2].text == "feed" assert doc[2].lemma_ == "feed" def test_issue599(en_vocab): doc = Doc(en_vocab) doc.is_tagged = True doc.is_parsed = True doc2 = Doc(doc.vocab) doc2.from_bytes(doc.to_bytes()) assert doc2.is_parsed def test_issue600(): vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}}) doc = Doc(vocab, words=["hello"]) doc[0].tag_ = "NN" def test_issue615(en_tokenizer): def merge_phrases(matcher, doc, i, matches): """Merge a phrase. We have to be careful here because we'll change the token indices. To avoid problems, merge all the phrases once we're called on the last match.""" if i != len(matches) - 1: return None spans = [(ent_id, ent_id, doc[start:end]) for ent_id, start, end in matches] for ent_id, label, span in spans: span.merge( tag="NNP" if label else span.root.tag_, lemma=span.text, label=label ) doc.ents = doc.ents + ((label, span.start, span.end),) text = "The golf club is broken" pattern = [{"ORTH": "golf"}, {"ORTH": "club"}] label = "Sport_Equipment" doc = en_tokenizer(text) matcher = Matcher(doc.vocab) matcher.add(label, merge_phrases, pattern) match = matcher(doc) entities = list(doc.ents) assert entities != [] assert entities[0].label != 0 @pytest.mark.parametrize("text,number", [("7am", "7"), ("11p.m.", "11")]) def test_issue736(en_tokenizer, text, number): """Test that times like "7am" are tokenized correctly and that numbers are converted to string.""" tokens = en_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == number @pytest.mark.parametrize("text", ["3/4/2012", "01/12/1900"]) def test_issue740(en_tokenizer, text): """Test that dates are not split and kept as one token. This behaviour is currently inconsistent, since dates separated by hyphens are still split. This will be hard to prevent without causing clashes with numeric ranges.""" tokens = en_tokenizer(text) assert len(tokens) == 1 def test_issue743(): doc = Doc(Vocab(), ["hello", "world"]) token = doc[0] s = set([token]) items = list(s) assert items[0] is token @pytest.mark.parametrize("text", ["We were scared", "We Were Scared"]) def test_issue744(en_tokenizer, text): """Test that 'were' and 'Were' are excluded from the contractions generated by the English tokenizer exceptions.""" tokens = en_tokenizer(text) assert len(tokens) == 3 assert tokens[1].text.lower() == "were" @pytest.mark.parametrize( "text,is_num", [("one", True), ("ten", True), ("teneleven", False)] ) def test_issue759(en_tokenizer, text, is_num): tokens = en_tokenizer(text) assert tokens[0].like_num == is_num @pytest.mark.parametrize("text", ["Shell", "shell", "Shed", "shed"]) def test_issue775(en_tokenizer, text): """Test that 'Shell' and 'shell' are excluded from the contractions generated by the English tokenizer exceptions.""" tokens = en_tokenizer(text) assert len(tokens) == 1 assert tokens[0].text == text @pytest.mark.parametrize("text", ["This is a string ", "This is a string\u0020"]) def test_issue792(en_tokenizer, text): """Test for Issue #792: Trailing whitespace is removed after tokenization.""" doc = en_tokenizer(text) assert "".join([token.text_with_ws for token in doc]) == text @pytest.mark.parametrize("text", ["This is a string", "This is a string\n"]) def test_control_issue792(en_tokenizer, text): """Test base case for Issue #792: Non-trailing whitespace""" doc = en_tokenizer(text) assert "".join([token.text_with_ws for token in doc]) == text @pytest.mark.parametrize( "text,tokens", [ ('"deserve,"--and', ['"', "deserve", ',"--', "and"]), ("exception;--exclusive", ["exception", ";--", "exclusive"]), ("day.--Is", ["day", ".--", "Is"]), ("refinement:--just", ["refinement", ":--", "just"]), ("memories?--To", ["memories", "?--", "To"]), ("Useful.=--Therefore", ["Useful", ".=--", "Therefore"]), ("=Hope.=--Pandora", ["=", "Hope", ".=--", "Pandora"]), ], ) def test_issue801(en_tokenizer, text, tokens): """Test that special characters + hyphens are split correctly.""" doc = en_tokenizer(text) assert len(doc) == len(tokens) assert [t.text for t in doc] == tokens @pytest.mark.parametrize( "text,expected_tokens", [ ( "Smörsåsen används bl.a. till fisk", ["Smörsåsen", "används", "bl.a.", "till", "fisk"], ), ( "Jag kommer först kl. 13 p.g.a. diverse förseningar", ["Jag", "kommer", "först", "kl.", "13", "p.g.a.", "diverse", "förseningar"], ), ], ) def test_issue805(sv_tokenizer, text, expected_tokens): tokens = sv_tokenizer(text) token_list = [token.text for token in tokens if not token.is_space] assert expected_tokens == token_list def test_issue850(): """The variable-length pattern matches the succeeding token. Check we handle the ambiguity correctly.""" vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) matcher = Matcher(vocab) IS_ANY_TOKEN = matcher.vocab.add_flag(lambda x: True) pattern = [{"LOWER": "bob"}, {"OP": "*", "IS_ANY_TOKEN": True}, {"LOWER": "frank"}] matcher.add("FarAway", None, pattern) doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) match = matcher(doc) assert len(match) == 1 ent_id, start, end = match[0] assert start == 0 assert end == 4 def test_issue850_basic(): """Test Matcher matches with '*' operator and Boolean flag""" vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) matcher = Matcher(vocab) IS_ANY_TOKEN = matcher.vocab.add_flag(lambda x: True) pattern = [{"LOWER": "bob"}, {"OP": "*", "LOWER": "and"}, {"LOWER": "frank"}] matcher.add("FarAway", None, pattern) doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) match = matcher(doc) assert len(match) == 1 ent_id, start, end = match[0] assert start == 0 assert end == 4 @pytest.mark.parametrize( "text", ["au-delàs", "pair-programmâmes", "terra-formées", "σ-compacts"] ) def test_issue852(fr_tokenizer, text): """Test that French tokenizer exceptions are imported correctly.""" tokens = fr_tokenizer(text) assert len(tokens) == 1 @pytest.mark.parametrize( "text", ["aaabbb@ccc.com\nThank you!", "aaabbb@ccc.com \nThank you!"] ) def test_issue859(en_tokenizer, text): """Test that no extra space is added in doc.text method.""" doc = en_tokenizer(text) assert doc.text == text @pytest.mark.parametrize("text", ["Datum:2014-06-02\nDokument:76467"]) def test_issue886(en_tokenizer, text): """Test that token.idx matches the original text index for texts with newlines.""" doc = en_tokenizer(text) for token in doc: assert len(token.text) == len(token.text_with_ws) assert text[token.idx] == token.text[0] @pytest.mark.parametrize("text", ["want/need"]) def test_issue891(en_tokenizer, text): """Test that / infixes are split correctly.""" tokens = en_tokenizer(text) assert len(tokens) == 3 assert tokens[1].text == "/" @pytest.mark.parametrize( "text,tag,lemma", [("anus", "NN", "anus"), ("princess", "NN", "princess"), ("inner", "JJ", "inner")], ) def test_issue912(en_vocab, text, tag, lemma): """Test base-forms are preserved.""" doc = Doc(en_vocab, words=[text]) doc[0].tag_ = tag assert doc[0].lemma_ == lemma def test_issue957(en_tokenizer): """Test that spaCy doesn't hang on many periods.""" # skip test if pytest-timeout is not installed timeout = pytest.importorskip("pytest-timeout") string = "0" for i in range(1, 100): string += ".%d" % i doc = en_tokenizer(string) @pytest.mark.xfail def test_issue999(train_data): """Test that adding entities and resuming training works passably OK. There are two issues here: 1) We have to readd labels. This isn't very nice. 2) There's no way to set the learning rate for the weight update, so we end up out-of-scale, causing it to learn too fast. """ TRAIN_DATA = [ ["hey", []], ["howdy", []], ["hey there", []], ["hello", []], ["hi", []], ["i'm looking for a place to eat", []], ["i'm looking for a place in the north of town", [[31, 36, "LOCATION"]]], ["show me chinese restaurants", [[8, 15, "CUISINE"]]], ["show me chines restaurants", [[8, 14, "CUISINE"]]], ] nlp = Language() ner = nlp.create_pipe("ner") nlp.add_pipe(ner) for _, offsets in TRAIN_DATA: for start, end, label in offsets: ner.add_label(label) nlp.begin_training() ner.model.learn_rate = 0.001 for itn in range(100): random.shuffle(TRAIN_DATA) for raw_text, entity_offsets in TRAIN_DATA: nlp.update([raw_text], [{"entities": entity_offsets}]) with make_tempdir() as model_dir: nlp.to_disk(model_dir) nlp2 = Language().from_disk(model_dir) for raw_text, entity_offsets in TRAIN_DATA: doc = nlp2(raw_text) ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents} for start, end, label in entity_offsets: if (start, end) in ents: assert ents[(start, end)] == label break else: if entity_offsets: raise Exception(ents)