# cython: profile=True from os import path import json import os import shutil from libc.string cimport memset from cymem.cymem cimport Address from thinc.typedefs cimport atom_t, weight_t from ..typedefs cimport univ_tag_t from ..typedefs cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB from ..typedefs cimport X, PUNCT, EOL from ..typedefs cimport id_t from ..structs cimport TokenC, Morphology, Lexeme from ..tokens cimport Tokens from ..morphology cimport set_morph_from_dict from .._ml cimport arg_max from .lemmatizer import Lemmatizer cpdef enum en_person_t: NO_PERSON FIRST SECOND THIRD NON_THIRD cpdef enum en_number_t: NO_NUMBER SINGULAR PLURAL MASS cpdef enum en_gender_t: NO_GENDER MASCULINE FEMININE NEUTER cpdef enum en_case_t: NO_CASE NOMINATIVE GENITIVE ACCUSATIVE REFLEXIVE DEMONYM cpdef enum en_tenspect_t: NO_TENSE BASE_VERB PRESENT PAST PASSIVE ING MODAL cpdef enum misc_t: NO_MISC COMPARATIVE SUPERLATIVE RELATIVE NAME cpdef enum: P2_sic P2_cluster P2_shape P2_prefix P2_suffix P2_pos P2_lemma P2_pos_type P1_sic P1_cluster P1_shape P1_prefix P1_suffix P1_pos P1_lemma P1_pos_type W_sic W_cluster W_shape W_prefix W_suffix W_pos W_lemma W_pos_type N1_sic N1_cluster N1_shape N1_prefix N1_suffix N1_pos N1_lemma N1_pos_type N2_sic N2_cluster N2_shape N2_prefix N2_suffix N2_pos N2_lemma N2_pos_type N_CONTEXT_FIELDS POS_TAGS = { 'NULL': (NO_TAG, {}), 'EOL': (EOL, {}), 'CC': (CONJ, {}), 'CD': (NUM, {}), 'DT': (DET, {}), 'EX': (DET, {}), 'FW': (X, {}), 'IN': (ADP, {}), 'JJ': (ADJ, {}), 'JJR': (ADJ, {'misc': COMPARATIVE}), 'JJS': (ADJ, {'misc': SUPERLATIVE}), 'LS': (X, {}), 'MD': (VERB, {'tenspect': MODAL}), 'NN': (NOUN, {}), 'NNS': (NOUN, {'number': PLURAL}), 'NNP': (NOUN, {'misc': NAME}), 'NNPS': (NOUN, {'misc': NAME, 'number': PLURAL}), 'PDT': (DET, {}), 'POS': (PRT, {'case': GENITIVE}), 'PRP': (NOUN, {}), 'PRP$': (NOUN, {'case': GENITIVE}), 'RB': (ADV, {}), 'RBR': (ADV, {'misc': COMPARATIVE}), 'RBS': (ADV, {'misc': SUPERLATIVE}), 'RP': (PRT, {}), 'SYM': (X, {}), 'TO': (PRT, {}), 'UH': (X, {}), 'VB': (VERB, {}), 'VBD': (VERB, {'tenspect': PAST}), 'VBG': (VERB, {'tenspect': ING}), 'VBN': (VERB, {'tenspect': PASSIVE}), 'VBP': (VERB, {'tenspect': PRESENT}), 'VBZ': (VERB, {'tenspect': PRESENT, 'person': THIRD}), 'WDT': (DET, {'misc': RELATIVE}), 'WP': (PRON, {'misc': RELATIVE}), 'WP$': (PRON, {'misc': RELATIVE, 'case': GENITIVE}), 'WRB': (ADV, {'misc': RELATIVE}), '!': (PUNCT, {}), '#': (PUNCT, {}), '$': (PUNCT, {}), "''": (PUNCT, {}), "(": (PUNCT, {}), ")": (PUNCT, {}), "-LRB-": (PUNCT, {}), "-RRB-": (PUNCT, {}), ".": (PUNCT, {}), ",": (PUNCT, {}), "``": (PUNCT, {}), ":": (PUNCT, {}), "?": (PUNCT, {}), } POS_TEMPLATES = ( (W_sic,), (P1_lemma, P1_pos), (P2_lemma, P2_pos), (N1_sic,), (N2_sic,), (W_suffix,), (W_prefix,), (P1_pos,), (P2_pos,), (P1_pos, P2_pos), (P1_pos, W_sic), (P1_suffix,), (N1_suffix,), (W_shape,), (W_cluster,), (N1_cluster,), (N2_cluster,), (P1_cluster,), (P2_cluster,), (W_pos_type,), (N1_pos_type,), (N1_pos_type,), (P1_pos, W_pos_type, N1_pos_type), ) cdef struct _CachedMorph: Morphology morph int lemma def setup_model_dir(tag_names, tag_map, templates, model_dir): if path.exists(model_dir): shutil.rmtree(model_dir) os.mkdir(model_dir) config = { 'templates': templates, 'tag_names': tag_names, 'tag_map': tag_map } with open(path.join(model_dir, 'config.json'), 'w') as file_: json.dump(config, file_) cdef class EnPosTagger: """A part-of-speech tagger for English""" def __init__(self, StringStore strings, data_dir): self.mem = Pool() model_dir = path.join(data_dir, 'pos') self.strings = strings cfg = json.load(open(path.join(data_dir, 'pos', 'config.json'))) self.tag_names = sorted(cfg['tag_names']) self.n_tags = len(self.tag_names) self.tag_map = cfg['tag_map'] cdef int n_tags = len(self.tag_names) + 1 self.model = Model(n_tags, cfg['templates'], model_dir) self._morph_cache = PreshMapArray(n_tags) self.tags = self.mem.alloc(n_tags, sizeof(PosTag)) for i, tag in enumerate(sorted(self.tag_names)): pos, props = self.tag_map[tag] self.tags[i].id = i self.tags[i].pos = pos set_morph_from_dict(&self.tags[i].morph, props) if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')): self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer', 'morphs.json')))) self.lemmatizer = Lemmatizer(path.join(data_dir, 'wordnet'), NOUN, VERB, ADJ) def __call__(self, Tokens tokens): """Apply the tagger, setting the POS tags onto the Tokens object. Args: tokens (Tokens): The tokens to be tagged. """ cdef int i cdef atom_t[N_CONTEXT_FIELDS] context cdef const weight_t* scores for i in range(tokens.length): if tokens.data[i].fine_pos == 0: fill_context(context, i, tokens.data) scores = self.model.score(context) tokens.data[i].fine_pos = arg_max(scores, self.model.n_classes) self.set_morph(i, tokens.data) def train(self, Tokens tokens, object golds): cdef int i cdef atom_t[N_CONTEXT_FIELDS] context cdef const weight_t* scores correct = 0 for i in range(tokens.length): fill_context(context, i, tokens.data) scores = self.model.score(context) guess = arg_max(scores, self.model.n_classes) self.model.update(context, guess, golds[i], guess != golds[i]) tokens.data[i].fine_pos = guess self.set_morph(i, tokens.data) correct += guess == golds[i] return correct cdef int set_morph(self, const int i, TokenC* tokens) except -1: cdef const PosTag* tag = &self.tags[tokens[i].fine_pos] tokens[i].pos = tag.pos cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.sic) if cached is NULL: cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph)) cached.lemma = self.lemmatize(tag.pos, tokens[i].lex) cached.morph = tag.morph self._morph_cache.set(tag.id, tokens[i].lex.sic, cached) tokens[i].lemma = cached.lemma tokens[i].morph = cached.morph cdef int lemmatize(self, const univ_tag_t pos, const Lexeme* lex) except -1: if self.lemmatizer is None: return lex.sic cdef bytes py_string = self.strings[lex.sic] if pos != NOUN and pos != VERB and pos != ADJ: return lex.sic cdef set lemma_strings cdef bytes lemma_string lemma_strings = self.lemmatizer(py_string, pos) lemma_string = sorted(lemma_strings)[0] lemma = self.strings.intern(lemma_string, len(lemma_string)).i return lemma def load_morph_exceptions(self, dict exc): cdef unicode pos_str cdef unicode form_str cdef unicode lemma_str cdef dict entries cdef dict props cdef int lemma cdef id_t sic cdef int pos for pos_str, entries in exc.items(): pos = self.tag_names.index(pos_str) for form_str, props in entries.items(): lemma_str = props.get('L', form_str) sic = self.strings[form_str] cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph)) cached.lemma = self.strings[lemma_str] set_morph_from_dict(&cached.morph, props) self._morph_cache.set(pos, sic, cached) cdef int fill_context(atom_t* context, const int i, const TokenC* tokens) except -1: _fill_from_token(&context[P2_sic], &tokens[i-2]) _fill_from_token(&context[P1_sic], &tokens[i-1]) _fill_from_token(&context[W_sic], &tokens[i]) _fill_from_token(&context[N1_sic], &tokens[i+1]) _fill_from_token(&context[N2_sic], &tokens[i+2]) cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil: context[0] = t.lex.sic context[1] = t.lex.cluster context[2] = t.lex.shape context[3] = t.lex.prefix context[4] = t.lex.suffix context[5] = t.pos context[6] = t.lemma context[7] = t.lex.pos_type