import pytest from spacy import registry from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer from spacy.pipeline import TextCategorizer, SentenceRecognizer from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL from spacy.pipeline.senter import DEFAULT_SENTER_MODEL from ..util import make_tempdir test_parsers = [DependencyParser, EntityRecognizer] @pytest.fixture def parser(en_vocab): config = { "learn_tokens": False, "min_action_freq": 30, "update_with_oracle_cut_size": 100, } model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] parser = DependencyParser(en_vocab, model, **config) parser.add_label("nsubj") return parser @pytest.fixture def blank_parser(en_vocab): config = { "learn_tokens": False, "min_action_freq": 30, "update_with_oracle_cut_size": 100, } model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] parser = DependencyParser(en_vocab, model, **config) return parser @pytest.fixture def taggers(en_vocab): model = registry.make_from_config({"model": DEFAULT_TAGGER_MODEL}, validate=True)["model"] tagger1 = Tagger(en_vocab, model, set_morphology=True) tagger2 = Tagger(en_vocab, model, set_morphology=True) return tagger1, tagger2 @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_roundtrip_bytes(en_vocab, Parser): config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] parser = Parser(en_vocab, model, **config) new_parser = Parser(en_vocab, model, **config) new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"])) bytes_2 = new_parser.to_bytes(exclude=["vocab"]) bytes_3 = parser.to_bytes(exclude=["vocab"]) assert len(bytes_2) == len(bytes_3) assert bytes_2 == bytes_3 @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_roundtrip_disk(en_vocab, Parser): config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] parser = Parser(en_vocab, model, **config) with make_tempdir() as d: file_path = d / "parser" parser.to_disk(file_path) parser_d = Parser(en_vocab, model, **config) parser_d = parser_d.from_disk(file_path) parser_bytes = parser.to_bytes(exclude=["model", "vocab"]) parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"]) assert len(parser_bytes) == len(parser_d_bytes) assert parser_bytes == parser_d_bytes def test_to_from_bytes(parser, blank_parser): assert parser.model is not True assert blank_parser.model is not True assert blank_parser.moves.n_moves != parser.moves.n_moves bytes_data = parser.to_bytes(exclude=["vocab"]) # the blank parser needs to be resized before we can call from_bytes blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves) blank_parser.from_bytes(bytes_data) assert blank_parser.model is not True assert blank_parser.moves.n_moves == parser.moves.n_moves @pytest.mark.skip( reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms." ) def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers): tagger1 = taggers[0] tagger1_b = tagger1.to_bytes() tagger1 = tagger1.from_bytes(tagger1_b) assert tagger1.to_bytes() == tagger1_b model = registry.make_from_config({"model": DEFAULT_TAGGER_MODEL}, validate=True)["model"] new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b) new_tagger1_b = new_tagger1.to_bytes() assert len(new_tagger1_b) == len(tagger1_b) assert new_tagger1_b == tagger1_b def test_serialize_tagger_roundtrip_disk(en_vocab, taggers): tagger1, tagger2 = taggers with make_tempdir() as d: file_path1 = d / "tagger1" file_path2 = d / "tagger2" tagger1.to_disk(file_path1) tagger2.to_disk(file_path2) model = registry.make_from_config({"model": DEFAULT_TAGGER_MODEL}, validate=True)["model"] tagger1_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path1) tagger2_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path2) assert tagger1_d.to_bytes() == tagger2_d.to_bytes() def test_serialize_textcat_empty(en_vocab): # See issue #1105 model = registry.make_from_config({"model": DEFAULT_TEXTCAT_MODEL}, validate=True)["model"] textcat = TextCategorizer( en_vocab, model, labels=["ENTITY", "ACTION", "MODIFIER"] ) textcat.to_bytes(exclude=["vocab"]) @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_pipe_exclude(en_vocab, Parser): model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] config = { "learn_tokens": False, "min_action_freq": 0, "update_with_oracle_cut_size": 100, } def get_new_parser(): new_parser = Parser(en_vocab, model, **config) return new_parser parser = Parser(en_vocab, model, **config) parser.cfg["foo"] = "bar" new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"])) assert "foo" in new_parser.cfg new_parser = get_new_parser().from_bytes( parser.to_bytes(exclude=["vocab"]), exclude=["cfg"] ) assert "foo" not in new_parser.cfg new_parser = get_new_parser().from_bytes( parser.to_bytes(exclude=["cfg"]), exclude=["vocab"] ) assert "foo" not in new_parser.cfg def test_serialize_sentencerecognizer(en_vocab): model = registry.make_from_config({"model": DEFAULT_SENTER_MODEL}, validate=True)["model"] sr = SentenceRecognizer(en_vocab, model) sr_b = sr.to_bytes() sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b) assert sr.to_bytes() == sr_d.to_bytes()