import srsly from typing import List, Dict, Union, Iterable, Any, Optional from pathlib import Path from .pipe import Pipe from ..errors import Errors from ..training import validate_examples from ..language import Language from ..matcher import Matcher from ..scorer import Scorer from ..symbols import IDS, TAG, POS, MORPH, LEMMA from ..tokens import Doc, Span from ..tokens._retokenize import normalize_token_attrs, set_token_attrs from ..vocab import Vocab from ..util import SimpleFrozenList from .. import util MatcherPatternType = List[Dict[Union[int, str], Any]] AttributeRulerPatternType = Dict[str, Union[MatcherPatternType, Dict, int]] @Language.factory( "attribute_ruler", default_config={"pattern_dicts": None, "validate": False} ) def make_attribute_ruler( nlp: Language, name: str, pattern_dicts: Optional[Iterable[AttributeRulerPatternType]], validate: bool, ): return AttributeRuler( nlp.vocab, name, pattern_dicts=pattern_dicts, validate=validate ) class AttributeRuler(Pipe): """Set token-level attributes for tokens matched by Matcher patterns. Additionally supports importing patterns from tag maps and morph rules. DOCS: https://nightly.spacy.io/api/attributeruler """ def __init__( self, vocab: Vocab, name: str = "attribute_ruler", *, pattern_dicts: Optional[Iterable[AttributeRulerPatternType]] = None, validate: bool = False, ) -> None: """Initialize the AttributeRuler. vocab (Vocab): The vocab. name (str): The pipe name. Defaults to "attribute_ruler". pattern_dicts (Iterable[Dict]): A list of pattern dicts with the keys as the arguments to AttributeRuler.add (`patterns`/`attrs`/`index`) to add as patterns. RETURNS (AttributeRuler): The AttributeRuler component. DOCS: https://nightly.spacy.io/api/attributeruler#init """ self.name = name self.vocab = vocab self.matcher = Matcher(self.vocab, validate=validate) self.attrs = [] self._attrs_unnormed = [] # store for reference self.indices = [] if pattern_dicts: self.add_patterns(pattern_dicts) def __call__(self, doc: Doc) -> Doc: """Apply the AttributeRuler to a Doc and set all attribute exceptions. doc (Doc): The document to process. RETURNS (Doc): The processed Doc. DOCS: https://nightly.spacy.io/api/attributeruler#call """ matches = self.matcher(doc, allow_missing=True) # Sort by the attribute ID, so that later rules have precendence matches = [ (_parse_key(self.vocab.strings[m_id]), m_id, s, e) for m_id, s, e in matches ] matches.sort() for attr_id, match_id, start, end in matches: span = Span(doc, start, end, label=match_id) attrs = self.attrs[attr_id] index = self.indices[attr_id] try: # The index can be negative, which makes it annoying to do # the boundscheck. Let Span do it instead. token = span[index] except IndexError: # The original exception is just our conditional logic, so we # raise from. raise ValueError( Errors.E1001.format( patterns=self.matcher.get(span.label), span=[t.text for t in span], index=index, ) ) from None set_token_attrs(span[index], attrs) return doc def pipe(self, stream, *, batch_size=128): """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://spacy.io/attributeruler/pipe#pipe """ for doc in stream: doc = self(doc) yield doc def load_from_tag_map( self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]] ) -> None: """Load attribute ruler patterns from a tag map. tag_map (dict): The tag map that maps fine-grained tags to coarse-grained tags and morphological features. DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules """ for tag, attrs in tag_map.items(): pattern = [{"TAG": tag}] attrs, morph_attrs = _split_morph_attrs(attrs) if "MORPH" not in attrs: morph = self.vocab.morphology.add(morph_attrs) attrs["MORPH"] = self.vocab.strings[morph] else: morph = self.vocab.morphology.add(attrs["MORPH"]) attrs["MORPH"] = self.vocab.strings[morph] self.add([pattern], attrs) def load_from_morph_rules( self, morph_rules: Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]] ) -> None: """Load attribute ruler patterns from morph rules. morph_rules (dict): The morph rules that map token text and fine-grained tags to coarse-grained tags, lemmas and morphological features. DOCS: https://nightly.spacy.io/api/attributeruler#load_from_morph_rules """ for tag in morph_rules: for word in morph_rules[tag]: pattern = [{"ORTH": word, "TAG": tag}] attrs = morph_rules[tag][word] attrs, morph_attrs = _split_morph_attrs(attrs) if "MORPH" in attrs: morph = self.vocab.morphology.add(attrs["MORPH"]) attrs["MORPH"] = self.vocab.strings[morph] elif morph_attrs: morph = self.vocab.morphology.add(morph_attrs) attrs["MORPH"] = self.vocab.strings[morph] self.add([pattern], attrs) def add( self, patterns: Iterable[MatcherPatternType], attrs: Dict, index: int = 0 ) -> None: """Add Matcher patterns for tokens that should be modified with the provided attributes. The token at the specified index within the matched span will be assigned the attributes. patterns (Iterable[List[Dict]]): A list of Matcher patterns. attrs (Dict): The attributes to assign to the target token in the matched span. index (int): The index of the token in the matched span to modify. May be negative to index from the end of the span. Defaults to 0. DOCS: https://nightly.spacy.io/api/attributeruler#add """ # We need to make a string here, because otherwise the ID we pass back # will be interpreted as the hash of a string, rather than an ordinal. key = _make_key(len(self.attrs)) self.matcher.add(self.vocab.strings.add(key), patterns) self._attrs_unnormed.append(attrs) attrs = normalize_token_attrs(self.vocab, attrs) self.attrs.append(attrs) self.indices.append(index) def add_patterns(self, pattern_dicts: Iterable[AttributeRulerPatternType]) -> None: """Add patterns from a list of pattern dicts with the keys as the arguments to AttributeRuler.add. pattern_dicts (Iterable[dict]): A list of pattern dicts with the keys as the arguments to AttributeRuler.add (patterns/attrs/index) to add as patterns. DOCS: https://nightly.spacy.io/api/attributeruler#add_patterns """ for p in pattern_dicts: self.add(**p) @property def patterns(self) -> List[AttributeRulerPatternType]: """All the added patterns.""" all_patterns = [] for i in range(len(self.attrs)): p = {} p["patterns"] = self.matcher.get(_make_key(i))[1] p["attrs"] = self._attrs_unnormed[i] p["index"] = self.indices[i] all_patterns.append(p) return all_patterns def score(self, examples, **kwargs): """Score a batch of examples. examples (Iterable[Example]): The examples to score. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_token_attr for the attributes "tag", "pos", "morph" and "lemma" for the target token attributes. DOCS: https://nightly.spacy.io/api/tagger#score """ validate_examples(examples, "AttributeRuler.score") results = {} attrs = set() for token_attrs in self.attrs: attrs.update(token_attrs) for attr in attrs: if attr == TAG: results.update(Scorer.score_token_attr(examples, "tag", **kwargs)) elif attr == POS: results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) elif attr == MORPH: results.update(Scorer.score_token_attr(examples, "morph", **kwargs)) elif attr == LEMMA: results.update(Scorer.score_token_attr(examples, "lemma", **kwargs)) return results def to_bytes(self, exclude: Iterable[str] = SimpleFrozenList()) -> bytes: """Serialize the AttributeRuler to a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. DOCS: https://nightly.spacy.io/api/attributeruler#to_bytes """ serialize = {} serialize["vocab"] = self.vocab.to_bytes serialize["patterns"] = lambda: srsly.msgpack_dumps(self.patterns) return util.to_bytes(serialize, exclude) def from_bytes( self, bytes_data: bytes, exclude: Iterable[str] = SimpleFrozenList() ): """Load the AttributeRuler from a bytestring. bytes_data (bytes): The data to load. exclude (Iterable[str]): String names of serialization fields to exclude. returns (AttributeRuler): The loaded object. DOCS: https://nightly.spacy.io/api/attributeruler#from_bytes """ def load_patterns(b): self.add_patterns(srsly.msgpack_loads(b)) deserialize = { "vocab": lambda b: self.vocab.from_bytes(b), "patterns": load_patterns, } util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk( self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList() ) -> None: """Serialize the AttributeRuler to disk. path (Union[Path, str]): A path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://nightly.spacy.io/api/attributeruler#to_disk """ serialize = { "vocab": lambda p: self.vocab.to_disk(p), "patterns": lambda p: srsly.write_msgpack(p, self.patterns), } util.to_disk(path, serialize, exclude) def from_disk( self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList() ) -> None: """Load the AttributeRuler from disk. path (Union[Path, str]): A path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://nightly.spacy.io/api/attributeruler#from_disk """ def load_patterns(p): self.add_patterns(srsly.read_msgpack(p)) deserialize = { "vocab": lambda p: self.vocab.from_disk(p), "patterns": load_patterns, } util.from_disk(path, deserialize, exclude) return self def _make_key(n_attr): return f"attr_rule_{n_attr}" def _parse_key(key): return int(key.rsplit("_", 1)[1]) def _split_morph_attrs(attrs): """Split entries from a tag map or morph rules dict into to two dicts, one with the token-level features (POS, LEMMA) and one with the remaining features, which are presumed to be individual MORPH features.""" other_attrs = {} morph_attrs = {} for k, v in attrs.items(): if k in "_" or k in IDS.keys() or k in IDS.values(): other_attrs[k] = v else: morph_attrs[k] = v return other_attrs, morph_attrs