cimport cython from libc.string cimport memcpy, memset import numpy from ..lexeme cimport EMPTY_LEXEME from ..serialize import BitArray from ..strings cimport slice_unicode from ..typedefs cimport attr_id_t, attr_t, flags_t from ..typedefs cimport LEMMA from ..typedefs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER from ..typedefs cimport POS, LEMMA, TAG, DEP from ..parts_of_speech import UNIV_POS_NAMES from ..parts_of_speech cimport CONJ, PUNCT from ..lexeme cimport check_flag from .spans import Span from ..structs cimport UniStr from .token cimport Token DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil: if feat_name == LEMMA: return token.lemma elif feat_name == POS: return token.pos elif feat_name == TAG: return token.tag elif feat_name == DEP: return token.dep else: return get_lex_attr(token.lex, feat_name) cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil: if feat_name < (sizeof(flags_t) * 8): return check_flag(lex, feat_name) elif feat_name == ID: return lex.id elif feat_name == ORTH: return lex.orth elif feat_name == LOWER: return lex.lower elif feat_name == NORM: return lex.norm elif feat_name == SHAPE: return lex.shape elif feat_name == PREFIX: return lex.prefix elif feat_name == SUFFIX: return lex.suffix elif feat_name == LENGTH: return lex.length elif feat_name == CLUSTER: return lex.cluster else: return 0 cdef class Doc: """ Container class for annotated text. Constructed via English.__call__ or Tokenizer.__call__. """ def __cinit__(self, Vocab vocab): self.vocab = vocab size = 20 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME self.data = data_start + PADDING self.max_length = size self.length = 0 self.is_tagged = False self.is_parsed = False def __getitem__(self, object i): """Get a token. Returns: token (Token): """ if isinstance(i, slice): if i.step is not None: raise ValueError("Stepped slices not supported in Span objects." "Try: list(doc)[start:stop:step] instead.") return Span(self, i.start, i.stop, label=0) if i < 0: i = self.length + i bounds_check(i, self.length, PADDING) return Token.cinit(self.vocab, &self.data[i], i, self.length) def __iter__(self): """Iterate over the tokens. Yields: token (Token): """ for i in range(self.length): yield Token.cinit(self.vocab, &self.data[i], i, self.length) def __len__(self): return self.length def __unicode__(self): return u''.join([t.string for t in self]) @property def string(self): return unicode(self) @property def ents(self): """Yields named-entity Span objects. Iterate over the span to get individual Token objects, or access the label: >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.') >>> ents = list(tokens.ents) >>> ents[0].label, ents[0].label_, ''.join(t.orth_ for t in ents[0]) (112504, u'PERSON', u'Best ') """ cdef int i cdef const TokenC* token cdef int start = -1 cdef int label = 0 for i in range(self.length): token = &self.data[i] if token.ent_iob == 1: assert start != -1 pass elif token.ent_iob == 2: if start != -1: yield Span(self, start, i, label=label) start = -1 label = 0 elif token.ent_iob == 3: if start != -1: yield Span(self, start, i, label=label) start = i label = token.ent_type if start != -1: yield Span(self, start, self.length, label=label) @property def sents(self): """ Yield a list of sentence Span objects, calculated from the dependency parse. """ cdef int i cdef Doc sent = Doc(self.vocab, self._string[self.data[0].idx:]) start = 0 for i in range(1, self.length): if self.data[i].sent_start: yield Span(self, start, i) start = i yield Span(self, start, self.length) cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1: if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.data[self.length] if LexemeOrToken is TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok t.idx = idx self.length += 1 return idx + t.lex.length @cython.boundscheck(False) cpdef np.ndarray to_array(self, object py_attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy ndarray of shape N*M, where N is the length of the sentence. Arguments: attr_ids (list[int]): A list of attribute ID ints. Returns: feat_array (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input attr_ids. """ cdef int i, j cdef attr_id_t feature cdef np.ndarray[long, ndim=2] output # Make an array from the attributes --- otherwise our inner loop is Python # dict iteration. cdef np.ndarray[long, ndim=1] attr_ids = numpy.asarray(py_attr_ids) output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int) for i in range(self.length): for j, feature in enumerate(attr_ids): output[i, j] = get_token_attr(&self.data[i], feature) return output def count_by(self, attr_id_t attr_id, exclude=None): """Produce a dict of {attribute (int): count (ints)} frequencies, keyed by the values of the given attribute ID. >>> from spacy.en import English, attrs >>> nlp = English() >>> tokens = nlp(u'apple apple orange banana') >>> tokens.count_by(attrs.ORTH) {12800L: 1, 11880L: 2, 7561L: 1} >>> tokens.to_array([attrs.ORTH]) array([[11880], [11880], [ 7561], [12800]]) """ cdef int i cdef attr_t attr cdef size_t count cdef PreshCounter counts = PreshCounter(2 ** 8) for i in range(self.length): if exclude is not None and exclude(self[i]): continue attr = get_token_attr(&self.data[i], attr_id) counts.inc(attr, 1) return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.data - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.data = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.data[i].lex = &EMPTY_LEXEME cdef int set_parse(self, const TokenC* parsed) except -1: # TODO: This method is fairly misleading atm. It's used by GreedyParser # to actually apply the parse calculated. Need to rethink this. self._py_tokens = [None] * self.length self.is_parsed = True for i in range(self.length): self.data[i] = parsed[i] def merge(self, int start_idx, int end_idx, unicode tag, unicode lemma, unicode ent_type): """Merge a multi-word expression into a single token. Currently experimental; API is likely to change.""" cdef int i cdef int start = -1 cdef int end = -1 for i in range(self.length): if self.data[i].idx == start_idx: start = i if (self.data[i].idx + self.data[i].lex.length) == end_idx: if start == -1: return None end = i + 1 break else: return None # Get LexemeC for newly merged token cdef UniStr new_orth_c slice_unicode(&new_orth_c, self._string, start_idx, end_idx) cdef const LexemeC* lex = self.vocab.get(self.mem, &new_orth_c) # House the new merged token where it starts cdef TokenC* token = &self.data[start] # Update fields token.lex = lex # What to do about morphology?? # TODO: token.morph = ??? token.tag = self.vocab.strings[tag] token.lemma = self.vocab.strings[lemma] if ent_type == 'O': token.ent_iob = 2 token.ent_type = 0 else: token.ent_iob = 3 token.ent_type = self.vocab.strings[ent_type] # Fix dependencies # Begin by setting all the head indices to absolute token positions # This is easier to work with for now than the offsets for i in range(self.length): self.data[i].head += i # Find the head of the merged token, and its dep relation outer_heads = {} for i in range(start, end): head_idx = self.data[i].head if head_idx == i or head_idx < start or head_idx >= end: # Don't consider "heads" which are actually dominated by a word # in the region we're merging gp = head_idx while self.data[gp].head != gp: if start <= gp < end: break gp = self.data[gp].head else: # If we have multiple words attaching to the same head, # but with different dep labels, we're preferring the last # occurring dep label. Shrug. What else could we do, I guess? outer_heads[head_idx] = self.data[i].dep token.head, token.dep = max(outer_heads.items()) # Adjust deps before shrinking tokens # Tokens which point into the merged token should now point to it # Subtract the offset from all tokens which point to >= end offset = (end - start) - 1 for i in range(self.length): head_idx = self.data[i].head if start <= head_idx < end: self.data[i].head = start elif head_idx >= end: self.data[i].head -= offset # TODO: Fix left and right deps # Now compress the token array for i in range(end, self.length): self.data[i - offset] = self.data[i] for i in range(self.length - offset, self.length): memset(&self.data[i], 0, sizeof(TokenC)) self.data[i].lex = &EMPTY_LEXEME self.length -= offset for i in range(self.length): # ...And, set heads back to a relative position self.data[i].head -= i # Clear cached Python objects self._py_tokens = [None] * self.length # Return the merged Python object return self[start] def serialize(self, bits=None): if bits is None: bits = BitArray() codec = self.vocab.codec ids = numpy.zeros(shape=(len(self),), dtype=numpy.uint32) cdef int i for i in range(self.length): ids[i] = self.data[i].lex.id bits = codec.encode(ids, bits=bits) for i in range(self.length): bits.append(self.data[i].spacy) return bits @staticmethod def deserialize(Vocab vocab, bits): biterator = iter(bits) ids = vocab.codec.decode(biterator) spaces = [] for bit in biterator: spaces.append(bit) if len(spaces) == len(ids): break string = u'' cdef const LexemeC* lex for id_, space in zip(ids, spaces): lex = vocab.lexemes[id_] string += vocab.strings[lex.orth] if space: string += u' ' cdef Doc doc = Doc(vocab, string) cdef int idx = 0 for i, id_ in enumerate(ids): doc.push_back(idx, vocab.lexemes[id_]) idx += vocab.lexemes[id_].length if spaces[i]: idx += 1 return doc