# coding: utf8 from __future__ import unicode_literals from collections import defaultdict, OrderedDict import srsly from ..errors import Errors from ..compat import basestring_ from ..util import ensure_path, to_disk, from_disk from ..tokens import Span from ..matcher import Matcher, PhraseMatcher DEFAULT_ENT_ID_SEP = '||' class EntityRuler(object): """The EntityRuler lets you add spans to the `Doc.ents` using token-based rules or exact phrase matches. It can be combined with the statistical `EntityRecognizer` to boost accuracy, or used on its own to implement a purely rule-based entity recognition system. After initialization, the component is typically added to the pipeline using `nlp.add_pipe`. DOCS: https://spacy.io/api/entityruler USAGE: https://spacy.io/usage/rule-based-matching#entityruler """ name = "entity_ruler" def __init__(self, nlp, phrase_matcher_attr=None, **cfg): """Initialize the entitiy ruler. If patterns are supplied here, they need to be a list of dictionaries with a `"label"` and `"pattern"` key. A pattern can either be a token pattern (list) or a phrase pattern (string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`. nlp (Language): The shared nlp object to pass the vocab to the matchers and process phrase patterns. phrase_matcher_attr (int / unicode): Token attribute to match on, passed to the internal PhraseMatcher as `attr` patterns (iterable): Optional patterns to load in. overwrite_ents (bool): If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. **cfg: Other config parameters. If pipeline component is loaded as part of a model pipeline, this will include all keyword arguments passed to `spacy.load`. RETURNS (EntityRuler): The newly constructed object. DOCS: https://spacy.io/api/entityruler#init """ self.nlp = nlp self.overwrite = cfg.get("overwrite_ents", False) self.token_patterns = defaultdict(list) self.phrase_patterns = defaultdict(list) self.matcher = Matcher(nlp.vocab) if phrase_matcher_attr is not None: self.phrase_matcher_attr = phrase_matcher_attr self.phrase_matcher = PhraseMatcher(nlp.vocab, attr=self.phrase_matcher_attr) else: self.phrase_matcher_attr = None self.phrase_matcher = PhraseMatcher(nlp.vocab) self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP) patterns = cfg.get("patterns") if patterns is not None: self.add_patterns(patterns) def __len__(self): """The number of all patterns added to the entity ruler.""" n_token_patterns = sum(len(p) for p in self.token_patterns.values()) n_phrase_patterns = sum(len(p) for p in self.phrase_patterns.values()) return n_token_patterns + n_phrase_patterns def __contains__(self, label): """Whether a label is present in the patterns.""" return label in self.token_patterns or label in self.phrase_patterns def __call__(self, doc): """Find matches in document and add them as entities. doc (Doc): The Doc object in the pipeline. RETURNS (Doc): The Doc with added entities, if available. DOCS: https://spacy.io/api/entityruler#call """ matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc)) matches = set( [(m_id, start, end) for m_id, start, end in matches if start != end] ) get_sort_key = lambda m: (m[2] - m[1], m[1]) matches = sorted(matches, key=get_sort_key, reverse=True) entities = list(doc.ents) new_entities = [] seen_tokens = set() for match_id, start, end in matches: if any(t.ent_type for t in doc[start:end]) and not self.overwrite: continue # check for end - 1 here because boundaries are inclusive if start not in seen_tokens and end - 1 not in seen_tokens: if self.ent_ids: label_ = self.nlp.vocab.strings[match_id] ent_label, ent_id = self._split_label(label_) span = Span(doc, start, end, label=ent_label) if ent_id: for token in span: token.ent_id_ = ent_id else: span = Span(doc, start, end, label=match_id) new_entities.append(span) entities = [ e for e in entities if not (e.start < end and e.end > start) ] seen_tokens.update(range(start, end)) doc.ents = entities + new_entities return doc @property def labels(self): """All labels present in the match patterns. RETURNS (set): The string labels. DOCS: https://spacy.io/api/entityruler#labels """ all_labels = set(self.token_patterns.keys()) all_labels.update(self.phrase_patterns.keys()) return tuple(all_labels) @property def ent_ids(self): """All entity ids present in the match patterns meta dicts. RETURNS (set): The string entity ids. DOCS: https://spacy.io/api/entityruler#labels """ all_ent_ids = set() for l in self.labels: if self.ent_id_sep in l: _, ent_id = self._split_label(l) all_ent_ids.add(ent_id) return tuple(all_ent_ids) @property def patterns(self): """Get all patterns that were added to the entity ruler. RETURNS (list): The original patterns, one dictionary per pattern. DOCS: https://spacy.io/api/entityruler#patterns """ all_patterns = [] for label, patterns in self.token_patterns.items(): for pattern in patterns: ent_label, ent_id = self._split_label(label) p = {"label": ent_label, "pattern": pattern} if ent_id: p["id"] = ent_id all_patterns.append(p) for label, patterns in self.phrase_patterns.items(): for pattern in patterns: ent_label, ent_id = self._split_label(label) p = {"label": ent_label, "pattern": pattern.text} if ent_id: p["id"] = ent_id all_patterns.append(p) return all_patterns def add_patterns(self, patterns): """Add patterns to the entitiy ruler. A pattern can either be a token pattern (list of dicts) or a phrase pattern (string). For example: {'label': 'ORG', 'pattern': 'Apple'} {'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]} patterns (list): The patterns to add. DOCS: https://spacy.io/api/entityruler#add_patterns """ for entry in patterns: label = entry["label"] if "id" in entry: label = self._create_label(label, entry["id"]) pattern = entry["pattern"] if isinstance(pattern, basestring_): self.phrase_patterns[label].append(self.nlp(pattern)) elif isinstance(pattern, list): self.token_patterns[label].append(pattern) else: raise ValueError(Errors.E097.format(pattern=pattern)) for label, patterns in self.token_patterns.items(): self.matcher.add(label, None, *patterns) for label, patterns in self.phrase_patterns.items(): self.phrase_matcher.add(label, None, *patterns) def _split_label(self, label): """Split Entity label into ent_label and ent_id if it contains self.ent_id_sep RETURNS (tuple): ent_label, ent_id """ if self.ent_id_sep in label: ent_label, ent_id = label.rsplit(self.ent_id_sep, 1) else: ent_label = label ent_id = None return ent_label, ent_id def _create_label(self, label, ent_id): """Join Entity label with ent_id if the pattern has an `id` attribute RETURNS (str): The ent_label joined with configured `ent_id_sep` """ if isinstance(ent_id, basestring_): label = "{}{}{}".format(label, self.ent_id_sep, ent_id) return label def from_bytes(self, patterns_bytes, **kwargs): """Load the entity ruler from a bytestring. patterns_bytes (bytes): The bytestring to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#from_bytes """ cfg = srsly.msgpack_loads(patterns_bytes) if isinstance(cfg, dict): self.add_patterns(cfg.get('patterns', cfg)) self.overwrite = cfg.get('overwrite', False) self.phrase_matcher_attr = cfg.get('phrase_matcher_attr', None) if self.phrase_matcher_attr is not None: self.phrase_matcher = PhraseMatcher(self.nlp.vocab, attr=self.phrase_matcher_attr) self.ent_id_sep = cfg.get('ent_id_sep', DEFAULT_ENT_ID_SEP) else: self.add_patterns(cfg) return self def to_bytes(self, **kwargs): """Serialize the entity ruler patterns to a bytestring. RETURNS (bytes): The serialized patterns. DOCS: https://spacy.io/api/entityruler#to_bytes """ serial = OrderedDict(( ('overwrite', self.overwrite), ('ent_id_sep', self.ent_id_sep), ('phrase_matcher_attr', self.phrase_matcher_attr), ('patterns', self.patterns))) return srsly.msgpack_dumps(serial) def from_disk(self, path, **kwargs): """Load the entity ruler from a file. Expects a file containing newline-delimited JSON (JSONL) with one entry per line. path (unicode / Path): The JSONL file to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#from_disk """ path = ensure_path(path) if path.is_file(): patterns = srsly.read_jsonl(path) self.add_patterns(patterns) else: cfg = {} deserializers = { 'patterns': lambda p: self.add_patterns(srsly.read_jsonl(p.with_suffix('.jsonl'))), 'cfg': lambda p: cfg.update(srsly.read_json(p)) } from_disk(path, deserializers, {}) self.overwrite = cfg.get('overwrite', False) self.phrase_matcher_attr = cfg.get('phrase_matcher_attr') self.ent_id_sep = cfg.get('ent_id_sep', DEFAULT_ENT_ID_SEP) if self.phrase_matcher_attr is not None: self.phrase_matcher = PhraseMatcher(self.nlp.vocab, attr=self.phrase_matcher_attr) return self def to_disk(self, path, **kwargs): """Save the entity ruler patterns to a directory. The patterns will be saved as newline-delimited JSON (JSONL). path (unicode / Path): The JSONL file to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#to_disk """ cfg = {'overwrite': self.overwrite, 'phrase_matcher_attr': self.phrase_matcher_attr, 'ent_id_sep': self.ent_id_sep} serializers = { 'patterns': lambda p: srsly.write_jsonl(p.with_suffix('.jsonl'), self.patterns), 'cfg': lambda p: srsly.write_json(p, cfg) } path = ensure_path(path) to_disk(path, serializers, {})