#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals import os from os import path import shutil import codecs import random import plac import cProfile import pstats import re import spacy.util from spacy.en import English from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir from spacy.syntax.parser import GreedyParser from spacy.syntax.parser import OracleError from spacy.syntax.util import Config from spacy.gold import read_json_file from spacy.gold import GoldParse from spacy.scorer import Scorer def add_noise(c, noise_level): if random.random() >= noise_level: return c elif c == ' ': return '\n' elif c == '\n': return ' ' elif c in ['.', "'", "!", "?"]: return '' else: return c.lower() def score_model(scorer, nlp, raw_text, annot_tuples): if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) else: tokens = nlp(raw_text, merge_mwes=False) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=False) def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0, gold_preproc=False, n_sents=0, corruption_level=0): dep_model_dir = path.join(model_dir, 'deps') pos_model_dir = path.join(model_dir, 'pos') ner_model_dir = path.join(model_dir, 'ner') if path.exists(dep_model_dir): shutil.rmtree(dep_model_dir) if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) if path.exists(ner_model_dir): shutil.rmtree(ner_model_dir) os.mkdir(dep_model_dir) os.mkdir(pos_model_dir) os.mkdir(ner_model_dir) setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir) Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, labels=Language.ParserTransitionSystem.get_labels(gold_tuples)) Config.write(ner_model_dir, 'config', features='ner', seed=seed, labels=Language.EntityTransitionSystem.get_labels(gold_tuples)) if n_sents > 0: gold_tuples = gold_tuples[:n_sents] nlp = Language(data_dir=model_dir) print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %" for itn in range(n_iter): scorer = Scorer() loss = 0 for raw_text, annot_tuples, ctnt in gold_tuples: score_model(scorer, nlp, raw_text, annot_tuples) if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) else: tokens = nlp.tokenizer(raw_text) gold = GoldParse(tokens, annot_tuples) nlp.tagger(tokens) try: loss += nlp.parser.train(tokens, gold) except AssertionError: # TODO: Do something about non-projective sentences pass nlp.entity.train(tokens, gold) nlp.tagger.train(tokens, gold.tags) random.shuffle(gold_tuples) print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f, scorer.tags_acc, scorer.token_acc) nlp.parser.model.end_training() nlp.entity.model.end_training() nlp.tagger.model.end_training() nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt')) def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=True): assert not gold_preproc nlp = Language(data_dir=model_dir) scorer = Scorer() for raw_text, annot_tuples, brackets in gold_tuples: if raw_text is not None: tokens = nlp(raw_text, merge_mwes=False) else: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.entity(tokens) nlp.parser(tokens) gold = GoldParse(tokens, annot_tuples) scorer.score(tokens, gold, verbose=verbose) return scorer def write_parses(Language, dev_loc, model_dir, out_loc): nlp = Language() gold_tuples = read_docparse_file(dev_loc) scorer = Scorer() out_file = codecs.open(out_loc, 'w', 'utf8') for raw_text, segmented_text, annot_tuples in gold_tuples: tokens = nlp(raw_text) for t in tokens: out_file.write( '%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_) ) return scorer @plac.annotations( train_loc=("Location of training json file"), dev_loc=("Location of development json file"), corruption_level=("Amount of noise to add to training data", "option", "c", float), model_dir=("Location of output model directory",), out_loc=("Out location", "option", "o", str), n_sents=("Number of training sentences", "option", "n", int), n_iter=("Number of training iterations", "option", "i", int), verbose=("Verbose error reporting", "flag", "v", bool), debug=("Debug mode", "flag", "d", bool) ) def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False, debug=False, corruption_level=0.0): #print 'reading gold' #gold_train = list(read_json_file(train_loc)) #print 'done' #train(English, gold_train, model_dir, # feat_set='basic' if not debug else 'debug', # gold_preproc=False, n_sents=n_sents, # corruption_level=corruption_level, n_iter=n_iter) if out_loc: write_parses(English, dev_loc, model_dir, out_loc) scorer = evaluate(English, list(read_json_file(dev_loc)), model_dir, gold_preproc=False, verbose=verbose) print 'TOK', 100-scorer.token_acc print 'POS', scorer.tags_acc print 'UAS', scorer.uas print 'LAS', scorer.las print 'NER P', scorer.ents_p print 'NER R', scorer.ents_r print 'NER F', scorer.ents_f if __name__ == '__main__': plac.call(main)