# cython: profile=True from __future__ import unicode_literals import ctypes import os from ._state cimport State from ._state cimport has_head, get_idx, get_s0, get_n0, get_left, get_right from ._state cimport is_final, at_eol, pop_stack, push_stack, add_dep from ._state cimport head_in_buffer, children_in_buffer from ._state cimport head_in_stack, children_in_stack from ._state cimport count_left_kids from ..structs cimport TokenC from .transition_system cimport do_func_t, get_cost_func_t from .transition_system cimport move_cost_func_t, label_cost_func_t from ..gold cimport GoldParse from ..gold cimport GoldParseC from libc.stdint cimport uint32_t from libc.string cimport memcpy from cymem.cymem cimport Pool from .stateclass cimport StateClass DEF NON_MONOTONIC = True DEF USE_BREAK = True cdef weight_t MIN_SCORE = -90000 # Break transition from here # http://www.aclweb.org/anthology/P13-1074 cdef enum: SHIFT REDUCE LEFT RIGHT BREAK N_MOVES MOVE_NAMES = [None] * N_MOVES MOVE_NAMES[SHIFT] = 'S' MOVE_NAMES[REDUCE] = 'D' MOVE_NAMES[LEFT] = 'L' MOVE_NAMES[RIGHT] = 'R' MOVE_NAMES[BREAK] = 'B' # Helper functions for the arc-eager oracle cdef int push_cost(StateClass stcls, const GoldParseC* gold, int target) except -1: cdef int cost = 0 cdef int i, S_i for i in range(stcls.stack_depth()): S_i = stcls.S(i) if gold.heads[target] == S_i: cost += 1 if gold.heads[S_i] == target and (NON_MONOTONIC or not stcls.has_head(S_i)): cost += 1 cost += Break.is_valid(stcls, -1) and Break.move_cost(stcls, gold) == 0 return cost cdef int pop_cost(StateClass stcls, const GoldParseC* gold, int target) except -1: cdef int cost = 0 cdef int i, B_i for i in range(stcls.buffer_length()): B_i = stcls.B(i) cost += gold.heads[B_i] == target cost += gold.heads[target] == B_i if gold.heads[B_i] == B_i or gold.heads[B_i] < target: break return cost cdef int arc_cost(StateClass stcls, const GoldParseC* gold, int head, int child) except -1: if arc_is_gold(gold, head, child): return 0 elif stcls.H(child) == gold.heads[child]: return 1 elif gold.heads[child] >= stcls.B(0): return 1 else: return 0 cdef bint arc_is_gold(const GoldParseC* gold, int head, int child) except -1: if gold.labels[child] == -1: return True elif _is_gold_root(gold, head) and _is_gold_root(gold, child): return True elif gold.heads[child] == head: return True else: return False cdef bint label_is_gold(const GoldParseC* gold, int head, int child, int label) except -1: if gold.labels[child] == -1: return True elif label == -1: return True elif gold.labels[child] == label: return True else: return False cdef bint _is_gold_root(const GoldParseC* gold, int word) except -1: return gold.labels[word] == -1 or gold.heads[word] == word cdef class Shift: @staticmethod cdef bint is_valid(StateClass st, int label) except -1: return not st.eol() @staticmethod cdef int transition(StateClass state, int label) except -1: # Set the dep label, in case we need it after we reduce if NON_MONOTONIC: state._sent[state.B(0)].dep = label state.push() @staticmethod cdef int cost(StateClass st, const GoldParseC* gold, int label) except -1: return Shift.move_cost(st, gold) + Shift.label_cost(st, gold, label) @staticmethod cdef int move_cost(StateClass s, const GoldParseC* gold) except -1: return push_cost(s, gold, s.B(0)) @staticmethod cdef int label_cost(StateClass s, const GoldParseC* gold, int label) except -1: return 0 cdef class Reduce: @staticmethod cdef bint is_valid(StateClass st, int label) except -1: if NON_MONOTONIC: return st.stack_depth() >= 2 #and not missing_brackets(s) else: return st.stack_depth() >= 2 and st.has_head(st.S(0)) @staticmethod cdef int transition(StateClass st, int label) except -1: if NON_MONOTONIC and not st.has_head(st.S(0)) and st.stack_depth() >= 2: st.add_arc(st.S(1), st.S(0), st.S_(0).dep) st.pop() @staticmethod cdef int cost(StateClass s, const GoldParseC* gold, int label) except -1: return Reduce.move_cost(s, gold) + Reduce.label_cost(s, gold, label) @staticmethod cdef int move_cost(StateClass s, const GoldParseC* gold) except -1: if NON_MONOTONIC: return pop_cost(s, gold, s.S(0)) else: return children_in_buffer(s, s.S(0), gold.heads) @staticmethod cdef int label_cost(StateClass s, const GoldParseC* gold, int label) except -1: return 0 cdef class LeftArc: @staticmethod cdef bint is_valid(StateClass st, int label) except -1: if NON_MONOTONIC: return st.stack_depth() >= 1 #and not missing_brackets(s) else: return st.stack_depth() >= 1 and not st.has_head(st.S(0)) @staticmethod cdef int transition(StateClass st, int label) except -1: # Interpret left-arcs from EOL as attachment to root if st.eol(): st.add_arc(st.S(0), st.S(0), label) else: st.add_arc(st.B(0), st.S(0), label) st.pop() @staticmethod cdef int cost(StateClass s, const GoldParseC* gold, int label) except -1: return LeftArc.move_cost(s, gold) + LeftArc.label_cost(s, gold, label) @staticmethod cdef int move_cost(StateClass s, const GoldParseC* gold) except -1: if arc_is_gold(gold, s.B(0), s.S(0)): return 0 else: return pop_cost(s, gold, s.S(0)) + arc_cost(s, gold, s.B(0), s.S(0)) @staticmethod cdef int label_cost(StateClass s, const GoldParseC* gold, int label) except -1: return arc_is_gold(gold, s.B(0), s.S(0)) and not label_is_gold(gold, s.B(0), s.S(0), label) cdef class RightArc: @staticmethod cdef bint is_valid(StateClass st, int label) except -1: return st.stack_depth() >= 1 and not st.eol() @staticmethod cdef int transition(StateClass st, int label) except -1: st.add_arc(st.S(0), st.B(0), label) st.push() @staticmethod cdef int cost(StateClass s, const GoldParseC* gold, int label) except -1: return RightArc.move_cost(s, gold) + RightArc.label_cost(s, gold, label) @staticmethod cdef int move_cost(StateClass s, const GoldParseC* gold) except -1: if arc_is_gold(gold, s.S(0), s.B(0)): return 0 else: return push_cost(s, gold, s.B(0)) + arc_cost(s, gold, s.S(0), s.B(0)) @staticmethod cdef int label_cost(StateClass s, const GoldParseC* gold, int label) except -1: return arc_is_gold(gold, s.S(0), s.B(0)) and not label_is_gold(gold, s.S(0), s.B(0), label) cdef class Break: @staticmethod cdef bint is_valid(StateClass st, int label) except -1: cdef int i if not USE_BREAK: return False elif st.eol(): return False elif st.stack_depth() < 1: return False elif NON_MONOTONIC: return True else: # In the Break transition paper, they have this constraint that prevents # Break if stack is disconnected. But, if we're doing non-monotonic parsing, # we prefer to relax this constraint. This is helpful in parsing whole # documents, because then we don't get stuck with words on the stack. seen_headless = False for i in range(st.stack_depth()): if not st.has_head(st.S(i)): if seen_headless: return False else: seen_headless = True # TODO: Constituency constraints return True @staticmethod cdef int transition(StateClass st, int label) except -1: st.set_sent_end(st.B(0)-1) while not st.empty(): if not st.has_head(st.S(0)): st._sent[st.S(0)].dep = label st.pop() @staticmethod cdef int cost(StateClass s, const GoldParseC* gold, int label) except -1: return Break.move_cost(s, gold) + Break.label_cost(s, gold, label) @staticmethod cdef int move_cost(StateClass s, const GoldParseC* gold) except -1: # When we break, we Reduce all of the words on the stack. cdef int cost = 0 # Number of deps between S0...Sn and N0...Nn cdef int i, B_i, S_i for i in range(s.buffer_length()): B_i = s.B(i) for j in range(s.stack_depth()): S_i = s.S(j) cost += gold.heads[B_i] == S_i cost += gold.heads[S_i] == B_i return cost @staticmethod cdef int label_cost(StateClass s, const GoldParseC* gold, int label) except -1: return 0 cdef class ArcEager(TransitionSystem): @classmethod def get_labels(cls, gold_parses): move_labels = {SHIFT: {'': True}, REDUCE: {'': True}, RIGHT: {}, LEFT: {'ROOT': True}, BREAK: {'ROOT': True}} for raw_text, sents in gold_parses: for (ids, words, tags, heads, labels, iob), ctnts in sents: for child, head, label in zip(ids, heads, labels): if label != 'ROOT': if head < child: move_labels[RIGHT][label] = True elif head > child: move_labels[LEFT][label] = True return move_labels cdef int preprocess_gold(self, GoldParse gold) except -1: for i in range(gold.length): if gold.heads[i] is None: # Missing values gold.c.heads[i] = i gold.c.labels[i] = -1 else: gold.c.heads[i] = gold.heads[i] gold.c.labels[i] = self.strings[gold.labels[i]] for end, brackets in gold.brackets.items(): for start, label_strs in brackets.items(): gold.c.brackets[start][end] = 1 for label_str in label_strs: # Add the encoded label to the set gold.brackets[end][start].add(self.strings[label_str]) cdef Transition lookup_transition(self, object name) except *: if '-' in name: move_str, label_str = name.split('-', 1) label = self.label_ids[label_str] else: label = 0 move = MOVE_NAMES.index(move_str) for i in range(self.n_moves): if self.c[i].move == move and self.c[i].label == label: return self.c[i] def move_name(self, int move, int label): label_str = self.strings[label] if label_str: return MOVE_NAMES[move] + '-' + label_str else: return MOVE_NAMES[move] cdef Transition init_transition(self, int clas, int move, int label) except *: # TODO: Apparent Cython bug here when we try to use the Transition() # constructor with the function pointers cdef Transition t t.score = 0 t.clas = clas t.move = move t.label = label if move == SHIFT: t.is_valid = Shift.is_valid t.do = Shift.transition t.get_cost = Shift.cost elif move == REDUCE: t.is_valid = Reduce.is_valid t.do = Reduce.transition t.get_cost = Reduce.cost elif move == LEFT: t.is_valid = LeftArc.is_valid t.do = LeftArc.transition t.get_cost = LeftArc.cost elif move == RIGHT: t.is_valid = RightArc.is_valid t.do = RightArc.transition t.get_cost = RightArc.cost elif move == BREAK: t.is_valid = Break.is_valid t.do = Break.transition t.get_cost = Break.cost else: raise Exception(move) return t cdef int initialize_state(self, State* state) except -1: push_stack(state) cdef int finalize_state(self, StateClass st) except -1: cdef int root_label = self.strings['ROOT'] for i in range(st.length): if st._sent[i].head == 0 and st._sent[i].dep == 0: st._sent[i].dep = root_label cdef int set_valid(self, bint* output, StateClass stcls) except -1: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(stcls, -1) is_valid[REDUCE] = Reduce.is_valid(stcls, -1) is_valid[LEFT] = LeftArc.is_valid(stcls, -1) is_valid[RIGHT] = RightArc.is_valid(stcls, -1) is_valid[BREAK] = Break.is_valid(stcls, -1) cdef int i for i in range(self.n_moves): output[i] = is_valid[self.c[i].move] cdef int set_costs(self, int* output, StateClass stcls, GoldParse gold) except -1: cdef int i, move, label cdef label_cost_func_t[N_MOVES] label_cost_funcs cdef move_cost_func_t[N_MOVES] move_cost_funcs cdef int[N_MOVES] move_costs for i in range(N_MOVES): move_costs[i] = -1 move_cost_funcs[SHIFT] = Shift.move_cost move_cost_funcs[REDUCE] = Reduce.move_cost move_cost_funcs[LEFT] = LeftArc.move_cost move_cost_funcs[RIGHT] = RightArc.move_cost move_cost_funcs[BREAK] = Break.move_cost label_cost_funcs[SHIFT] = Shift.label_cost label_cost_funcs[REDUCE] = Reduce.label_cost label_cost_funcs[LEFT] = LeftArc.label_cost label_cost_funcs[RIGHT] = RightArc.label_cost label_cost_funcs[BREAK] = Break.label_cost cdef int* labels = gold.c.labels cdef int* heads = gold.c.heads self.set_valid(self._is_valid, stcls) for i in range(self.n_moves): if not self._is_valid[i]: output[i] = 9000 else: move = self.c[i].move label = self.c[i].label if move_costs[move] == -1: move_costs[move] = move_cost_funcs[move](stcls, &gold.c) output[i] = move_costs[move] + label_cost_funcs[move](stcls, &gold.c, label) cdef Transition best_valid(self, const weight_t* scores, StateClass stcls) except *: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(stcls, -1) is_valid[REDUCE] = Reduce.is_valid(stcls, -1) is_valid[LEFT] = LeftArc.is_valid(stcls, -1) is_valid[RIGHT] = RightArc.is_valid(stcls, -1) is_valid[BREAK] = Break.is_valid(stcls, -1) cdef Transition best cdef weight_t score = MIN_SCORE cdef int i for i in range(self.n_moves): if scores[i] > score and is_valid[self.c[i].move]: best = self.c[i] score = scores[i] assert best.clas < self.n_moves assert score > MIN_SCORE # Label Shift moves with the best Right-Arc label, for non-monotonic # actions if best.move == SHIFT: score = MIN_SCORE for i in range(self.n_moves): if self.c[i].move == RIGHT and scores[i] > score: best.label = self.c[i].label score = scores[i] return best