# cython: profile=True # cython: infer_types=True # coding: utf8 from __future__ import unicode_literals import ujson from cymem.cymem cimport Pool from preshed.maps cimport PreshMap from libcpp.vector cimport vector from libcpp.pair cimport pair from cython.operator cimport dereference as deref from murmurhash.mrmr cimport hash64 from libc.stdint cimport int32_t try: from libcpp.unordered_map cimport unordered_map as umap except: from libcpp.map cimport map as umap from .typedefs cimport attr_t from .typedefs cimport hash_t from .structs cimport TokenC from .tokens.doc cimport Doc, get_token_attr from .vocab cimport Vocab from .attrs import IDS from .attrs cimport attr_id_t, ID, NULL_ATTR from .attrs import FLAG61 as U_ENT from .attrs import FLAG60 as B2_ENT from .attrs import FLAG59 as B3_ENT from .attrs import FLAG58 as B4_ENT from .attrs import FLAG57 as B5_ENT from .attrs import FLAG56 as B6_ENT from .attrs import FLAG55 as B7_ENT from .attrs import FLAG54 as B8_ENT from .attrs import FLAG53 as B9_ENT from .attrs import FLAG52 as B10_ENT from .attrs import FLAG51 as I3_ENT from .attrs import FLAG50 as I4_ENT from .attrs import FLAG49 as I5_ENT from .attrs import FLAG48 as I6_ENT from .attrs import FLAG47 as I7_ENT from .attrs import FLAG46 as I8_ENT from .attrs import FLAG45 as I9_ENT from .attrs import FLAG44 as I10_ENT from .attrs import FLAG43 as L2_ENT from .attrs import FLAG42 as L3_ENT from .attrs import FLAG41 as L4_ENT from .attrs import FLAG40 as L5_ENT from .attrs import FLAG39 as L6_ENT from .attrs import FLAG38 as L7_ENT from .attrs import FLAG37 as L8_ENT from .attrs import FLAG36 as L9_ENT from .attrs import FLAG35 as L10_ENT cpdef enum quantifier_t: _META ONE ZERO ZERO_ONE ZERO_PLUS cdef enum action_t: REJECT ADVANCE REPEAT ACCEPT ADVANCE_ZERO ADVANCE_PLUS ACCEPT_PREV PANIC # Each token pattern consists of a quantifier and 0+ (attr, value) pairs. # A state is an (int, pattern pointer) pair, where the int is the start # position, and the pattern pointer shows where we're up to # in the pattern. cdef struct AttrValueC: attr_id_t attr attr_t value cdef struct TokenPatternC: AttrValueC* attrs int32_t nr_attr quantifier_t quantifier ctypedef TokenPatternC* TokenPatternC_ptr ctypedef pair[int, TokenPatternC_ptr] StateC # Match Dictionary entry type cdef struct MatchEntryC: int32_t start int32_t end int32_t offset cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs) except NULL: pattern = mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC)) cdef int i for i, (quantifier, spec) in enumerate(token_specs): pattern[i].quantifier = quantifier pattern[i].attrs = mem.alloc(len(spec), sizeof(AttrValueC)) pattern[i].nr_attr = len(spec) for j, (attr, value) in enumerate(spec): pattern[i].attrs[j].attr = attr pattern[i].attrs[j].value = value i = len(token_specs) pattern[i].attrs = mem.alloc(2, sizeof(AttrValueC)) pattern[i].attrs[0].attr = ID pattern[i].attrs[0].value = entity_id pattern[i].nr_attr = 0 return pattern cdef attr_t get_pattern_key(const TokenPatternC* pattern) except 0: while pattern.nr_attr != 0: pattern += 1 id_attr = pattern[0].attrs[0] assert id_attr.attr == ID return id_attr.value cdef int get_action(const TokenPatternC* pattern, const TokenC* token) nogil: lookahead = &pattern[1] for attr in pattern.attrs[:pattern.nr_attr]: if get_token_attr(token, attr.attr) != attr.value: if pattern.quantifier == ONE: return REJECT elif pattern.quantifier == ZERO: return ACCEPT if lookahead.nr_attr == 0 else ADVANCE elif pattern.quantifier in (ZERO_ONE, ZERO_PLUS): return ACCEPT_PREV if lookahead.nr_attr == 0 else ADVANCE_ZERO else: return PANIC if pattern.quantifier == ZERO: return REJECT elif lookahead.nr_attr == 0: if pattern.quantifier == ZERO_PLUS: return REPEAT else: return ACCEPT elif pattern.quantifier in (ONE, ZERO_ONE): return ADVANCE elif pattern.quantifier == ZERO_PLUS: # This is a bandaid over the 'shadowing' problem described here: # https://github.com/explosion/spaCy/issues/864 next_action = get_action(lookahead, token) if next_action is REJECT: return REPEAT else: return ADVANCE_PLUS else: return PANIC def _convert_strings(token_specs, string_store): # Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS operators = {'!': (ZERO,), '*': (ZERO_PLUS,), '+': (ONE, ZERO_PLUS), '?': (ZERO_ONE,), '1': (ONE,)} tokens = [] op = ONE for spec in token_specs: if not spec: # Signifier for 'any token' tokens.append((ONE, [(NULL_ATTR, 0)])) continue token = [] ops = (ONE,) for attr, value in spec.items(): if isinstance(attr, basestring) and attr.upper() == 'OP': if value in operators: ops = operators[value] else: msg = "Unknown operator '%s'. Options: %s" raise KeyError(msg % (value, ', '.join(operators.keys()))) if isinstance(attr, basestring): attr = IDS.get(attr.upper()) if isinstance(value, basestring): value = string_store.add(value) if isinstance(value, bool): value = int(value) if attr is not None: token.append((attr, value)) for op in ops: tokens.append((op, token)) return tokens def merge_phrase(matcher, doc, i, matches): """Callback to merge a phrase on match.""" ent_id, label, start, end = matches[i] span = doc[start:end] span.merge(ent_type=label, ent_id=ent_id) cdef class Matcher: """Match sequences of tokens, based on pattern rules.""" cdef Pool mem cdef vector[TokenPatternC*] patterns cdef readonly Vocab vocab cdef public object _patterns cdef public object _entities cdef public object _callbacks def __init__(self, vocab): """Create the Matcher. vocab (Vocab): The vocabulary object, which must be shared with the documents the matcher will operate on. RETURNS (Matcher): The newly constructed object. """ self._patterns = {} self._entities = {} self._callbacks = {} self.vocab = vocab self.mem = Pool() def __reduce__(self): return (self.__class__, (self.vocab, self._patterns), None, None) def __len__(self): """Get the number of rules added to the matcher. Note that this only returns the number of rules (identical with the number of IDs), not the number of individual patterns. RETURNS (int): The number of rules. """ return len(self._patterns) def __contains__(self, key): """Check whether the matcher contains rules for a match ID. key (unicode): The match ID. RETURNS (bool): Whether the matcher contains rules for this match ID. """ return self._normalize_key(key) in self._patterns def add(self, key, on_match, *patterns): """Add a match-rule to the matcher. A match-rule consists of: an ID key, an on_match callback, and one or more patterns. If the key exists, the patterns are appended to the previous ones, and the previous on_match callback is replaced. The `on_match` callback will receive the arguments `(matcher, doc, i, matches)`. You can also set `on_match` to `None` to not perform any actions. A pattern consists of one or more `token_specs`, where a `token_spec` is a dictionary mapping attribute IDs to values, and optionally a quantifier operator under the key "op". The available quantifiers are: '!': Negate the pattern, by requiring it to match exactly 0 times. '?': Make the pattern optional, by allowing it to match 0 or 1 times. '+': Require the pattern to match 1 or more times. '*': Allow the pattern to zero or more times. The + and * operators are usually interpretted "greedily", i.e. longer matches are returned where possible. However, if you specify two '+' and '*' patterns in a row and their matches overlap, the first operator will behave non-greedily. This quirk in the semantics makes the matcher more efficient, by avoiding the need for back-tracking. key (unicode): The match ID. on_match (callable): Callback executed on match. *patterns (list): List of token descritions. """ for pattern in patterns: if len(pattern) == 0: msg = ("Cannot add pattern for zero tokens to matcher.\n" "key: {key}\n") raise ValueError(msg.format(key=key)) key = self._normalize_key(key) self._patterns.setdefault(key, []) self._callbacks[key] = on_match for pattern in patterns: specs = _convert_strings(pattern, self.vocab.strings) self.patterns.push_back(init_pattern(self.mem, key, specs)) self._patterns[key].append(specs) def remove(self, key): """Remove a rule from the matcher. A KeyError is raised if the key does not exist. key (unicode): The ID of the match rule. """ key = self._normalize_key(key) self._patterns.pop(key) self._callbacks.pop(key) cdef int i = 0 while i < self.patterns.size(): pattern_key = get_pattern_key(self.patterns.at(i)) if pattern_key == key: self.patterns.erase(self.patterns.begin()+i) else: i += 1 def has_key(self, key): """Check whether the matcher has a rule with a given key. key (string or int): The key to check. RETURNS (bool): Whether the matcher has the rule. """ key = self._normalize_key(key) return key in self._patterns def get(self, key, default=None): """Retrieve the pattern stored for a key. key (unicode or int): The key to retrieve. RETURNS (tuple): The rule, as an (on_match, patterns) tuple. """ key = self._normalize_key(key) if key not in self._patterns: return default return (self._callbacks[key], self._patterns[key]) def pipe(self, docs, batch_size=1000, n_threads=2): """Match a stream of documents, yielding them in turn. docs (iterable): A stream of documents. batch_size (int): Number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel, if the implementation supports multi-threading. YIELDS (Doc): Documents, in order. """ for doc in docs: self(doc) yield doc def __call__(self, Doc doc): """Find all token sequences matching the supplied pattern. doc (Doc): The document to match over. RETURNS (list): A list of `(key, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `label_id` and `key` are both integers. """ cdef vector[StateC] partials cdef int n_partials = 0 cdef int q = 0 cdef int i, token_i cdef const TokenC* token cdef StateC state cdef int j = 0 cdef int k cdef bint add_match,overlap = False cdef TokenPatternC_ptr final_state cdef umap[TokenPatternC_ptr,MatchEntryC] matches_dict cdef umap[TokenPatternC_ptr,MatchEntryC].iterator state_match cdef MatchEntryC new_match matches = [] for token_i in range(doc.length): token = &doc.c[token_i] q = 0 # Go over the open matches, extending or finalizing if able. # Otherwise, we over-write them (q doesn't advance) #for state in partials: j=0 while j < n_partials: state = partials[j] action = get_action(state.second, token) j += 1 # Skip patterns that would overlap with an existing match # Patterns overlap an existing match if they point to the # same final state and start between the start and end # of said match. # Different patterns with the same label are allowed to # overlap. final_state = state.second while final_state.nr_attr != 0: final_state+=1 state_match = matches_dict.find(final_state) if (state_match != matches_dict.end() and state.first>deref(state_match).second.start and state.first= deref(state_match).second.end: new_match.start = start new_match.end = end new_match.offset = len(matches) matches_dict[final_state] = new_match matches.append((ent_id,start,end)) elif start <= deref(state_match).second.start and end>=deref(state_match).second.end: i = deref(state_match).second.offset matches[i] = (ent_id,start,end) new_match.start = start new_match.end = end new_match.offset = i matches_dict[final_state] = new_match else: pass partials.resize(q) n_partials = q # Check whether we open any new patterns on this token for pattern in self.patterns: # Skip patterns that would overlap with an existing match ent_id = get_pattern_key(pattern) final_state = pattern while final_state.nr_attr != 0: final_state+=1 state_match = matches_dict.find(final_state) if (state_match != matches_dict.end() and token_i>deref(state_match).second.start and token_i= deref(state_match).second.end: new_match.start = start new_match.end = end new_match.offset = len(matches) matches_dict[final_state] = new_match matches.append((ent_id,start,end)) elif start <= deref(state_match).second.start and end>=deref(state_match).second.end: j = deref(state_match).second.offset matches[j] = (ent_id,start,end) new_match.start = start new_match.end = end new_match.offset = j matches_dict[final_state] = new_match else: pass # Look for open patterns that are actually satisfied for state in partials: while state.second.quantifier in (ZERO, ZERO_ONE, ZERO_PLUS): state.second += 1 if state.second.nr_attr == 0: start = state.first end = len(doc) ent_id = state.second.attrs[0].value label = state.second.attrs[1].value final_state = state.second state_match = matches_dict.find(final_state) if state_match == matches_dict.end(): new_match.start = start new_match.end = end new_match.offset = len(matches) matches_dict[final_state] = new_match matches.append((ent_id,start,end)) elif start >= deref(state_match).second.end: new_match.start = start new_match.end = end new_match.offset = len(matches) matches_dict[final_state] = new_match matches.append((ent_id,start,end)) elif start <= deref(state_match).second.start and end>=deref(state_match).second.end: j = deref(state_match).second.offset matches[j] = (ent_id,start,end) new_match.start = start new_match.end = end new_match.offset = j matches_dict[final_state] = new_match else: pass for i, (ent_id, start, end) in enumerate(matches): on_match = self._callbacks.get(ent_id) if on_match is not None: on_match(self, doc, i, matches) return matches def _normalize_key(self, key): if isinstance(key, basestring): return self.vocab.strings.add(key) else: return key def get_bilou(length): if length == 1: return [U_ENT] elif length == 2: return [B2_ENT, L2_ENT] elif length == 3: return [B3_ENT, I3_ENT, L3_ENT] elif length == 4: return [B4_ENT, I4_ENT, I4_ENT, L4_ENT] elif length == 5: return [B5_ENT, I5_ENT, I5_ENT, I5_ENT, L5_ENT] elif length == 6: return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT] elif length == 7: return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT] elif length == 8: return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT] elif length == 9: return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, L9_ENT] elif length == 10: return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, L10_ENT] else: raise ValueError("Max length currently 10 for phrase matching") cdef class PhraseMatcher: cdef Pool mem cdef Vocab vocab cdef Matcher matcher cdef PreshMap phrase_ids cdef int max_length cdef attr_t* _phrase_key cdef public object _callbacks cdef public object _patterns def __init__(self, Vocab vocab, max_length=10): self.mem = Pool() self._phrase_key = self.mem.alloc(max_length, sizeof(attr_t)) self.max_length = max_length self.vocab = vocab self.matcher = Matcher(self.vocab) self.phrase_ids = PreshMap() abstract_patterns = [] for length in range(1, max_length): abstract_patterns.append([{tag: True} for tag in get_bilou(length)]) self.matcher.add('Candidate', None, *abstract_patterns) self._callbacks = {} def __len__(self): """Get the number of rules added to the matcher. Note that this only returns the number of rules (identical with the number of IDs), not the number of individual patterns. RETURNS (int): The number of rules. """ return len(self.phrase_ids) def __contains__(self, key): """Check whether the matcher contains rules for a match ID. key (unicode): The match ID. RETURNS (bool): Whether the matcher contains rules for this match ID. """ cdef hash_t ent_id = self.matcher._normalize_key(key) return ent_id in self._callbacks def __reduce__(self): return (self.__class__, (self.vocab,), None, None) def add(self, key, on_match, *docs): """Add a match-rule to the matcher. A match-rule consists of: an ID key, an on_match callback, and one or more patterns. key (unicode): The match ID. on_match (callable): Callback executed on match. *docs (Doc): `Doc` objects representing match patterns. """ cdef Doc doc for doc in docs: if len(doc) >= self.max_length: msg = ( "Pattern length (%d) >= phrase_matcher.max_length (%d). " "Length can be set on initialization, up to 10." ) raise ValueError(msg % (len(doc), self.max_length)) cdef hash_t ent_id = self.matcher._normalize_key(key) self._callbacks[ent_id] = on_match cdef int length cdef int i cdef hash_t phrase_hash for doc in docs: length = doc.length tags = get_bilou(length) for i in range(self.max_length): self._phrase_key[i] = 0 for i, tag in enumerate(tags): lexeme = self.vocab[doc.c[i].lex.orth] lexeme.set_flag(tag, True) self._phrase_key[i] = lexeme.orth phrase_hash = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0) self.phrase_ids.set(phrase_hash, ent_id) def __call__(self, Doc doc): """Find all sequences matching the supplied patterns on the `Doc`. doc (Doc): The document to match over. RETURNS (list): A list of `(key, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `label_id` and `key` are both integers. """ matches = [] for _, start, end in self.matcher(doc): ent_id = self.accept_match(doc, start, end) if ent_id is not None: matches.append((ent_id, start, end)) for i, (ent_id, start, end) in enumerate(matches): on_match = self._callbacks.get(ent_id) if on_match is not None: on_match(self, doc, i, matches) return matches def pipe(self, stream, batch_size=1000, n_threads=2): """Match a stream of documents, yielding them in turn. docs (iterable): A stream of documents. batch_size (int): Number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel, if the implementation supports multi-threading. YIELDS (Doc): Documents, in order. """ for doc in stream: self(doc) yield doc def accept_match(self, Doc doc, int start, int end): assert (end - start) < self.max_length cdef int i, j for i in range(self.max_length): self._phrase_key[i] = 0 for i, j in enumerate(range(start, end)): self._phrase_key[i] = doc.c[j].lex.orth cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0) ent_id = self.phrase_ids.get(key) if ent_id == 0: return None else: return ent_id