# coding: utf8 from __future__ import print_function, unicode_literals import plac import random import numpy import time from collections import Counter from pathlib import Path from thinc.v2v import Affine, Maxout from thinc.misc import LayerNorm as LN from thinc.neural.util import prefer_gpu from wasabi import Printer import srsly from ..tokens import Doc from ..attrs import ID, HEAD from .._ml import Tok2Vec, flatten, chain, create_default_optimizer from .._ml import masked_language_model from .. import util @plac.annotations( texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str), vectors_model=("Name or path to vectors model to learn from"), output_dir=("Directory to write models each epoch", "positional", None, str), width=("Width of CNN layers", "option", "cw", int), depth=("Depth of CNN layers", "option", "cd", int), embed_rows=("Embedding rows", "option", "er", int), use_vectors=("Whether to use the static vectors as input features", "flag", "uv"), dropout=("Dropout", "option", "d", float), batch_size=("Number of words per training batch", "option", "bs", int), max_length=("Max words per example.", "option", "xw", int), min_length=("Min words per example.", "option", "nw", int), seed=("Seed for random number generators", "option", "s", float), nr_iter=("Number of iterations to pretrain", "option", "i", int), ) def pretrain( texts_loc, vectors_model, output_dir, width=96, depth=4, embed_rows=2000, use_vectors=False, dropout=0.2, nr_iter=1000, batch_size=3000, max_length=500, min_length=5, seed=0, ): """ Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, using an approximate language-modelling objective. Specifically, we load pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict vectors which match the pre-trained ones. The weights are saved to a directory after each epoch. You can then pass a path to one of these pre-trained weights files to the 'spacy train' command. This technique may be especially helpful if you have little labelled data. However, it's still quite experimental, so your mileage may vary. To load the weights back in during 'spacy train', you need to ensure all settings are the same between pretraining and training. The API and errors around this need some improvement. """ config = dict(locals()) msg = Printer() util.fix_random_seed(seed) has_gpu = prefer_gpu() msg.info("Using GPU" if has_gpu else "Not using GPU") output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() msg.good("Created output directory") srsly.write_json(output_dir / "config.json", config) msg.good("Saved settings to config.json") # Load texts from file or stdin if texts_loc != "-": # reading from a file texts_loc = Path(texts_loc) if not texts_loc.exists(): msg.fail("Input text file doesn't exist", texts_loc, exits=1) with msg.loading("Loading input texts..."): texts = list(srsly.read_jsonl(texts_loc)) msg.good("Loaded input texts") random.shuffle(texts) else: # reading from stdin msg.text("Reading input text from stdin...") texts = srsly.read_jsonl("-") with msg.loading("Loading model '{}'...".format(vectors_model)): nlp = util.load_model(vectors_model) msg.good("Loaded model '{}'".format(vectors_model)) pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name model = create_pretraining_model( nlp, Tok2Vec( width, embed_rows, conv_depth=depth, pretrained_vectors=pretrained_vectors, bilstm_depth=0, # Requires PyTorch. Experimental. cnn_maxout_pieces=3, # You can try setting this higher subword_features=True, # Set to False for Chinese etc ), ) optimizer = create_default_optimizer(model.ops) tracker = ProgressTracker(frequency=10000) msg.divider("Pre-training tok2vec layer") row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")} msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings) for epoch in range(nr_iter): for batch in util.minibatch_by_words( ((text, None) for text in texts), size=batch_size ): docs = make_docs( nlp, [text for (text, _) in batch], max_length=max_length, min_length=min_length, ) loss = make_update(model, docs, optimizer, drop=dropout) progress = tracker.update(epoch, loss, docs) if progress: msg.row(progress, **row_settings) if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7: break with model.use_params(optimizer.averages): with (output_dir / ("model%d.bin" % epoch)).open("wb") as file_: file_.write(model.tok2vec.to_bytes()) log = { "nr_word": tracker.nr_word, "loss": tracker.loss, "epoch_loss": tracker.epoch_loss, "epoch": epoch, } with (output_dir / "log.jsonl").open("a") as file_: file_.write(srsly.json_dumps(log) + "\n") tracker.epoch_loss = 0.0 if texts_loc != "-": # Reshuffle the texts if texts were loaded from a file random.shuffle(texts) def make_update(model, docs, optimizer, drop=0.0, objective="L2"): """Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. optimizer (callable): An optimizer. RETURNS loss: A float for the loss. """ predictions, backprop = model.begin_update(docs, drop=drop) loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective) backprop(gradients, sgd=optimizer) # Don't want to return a cupy object here # The gradients are modified in-place by the BERT MLM, # so we get an accurate loss return float(loss) def make_docs(nlp, batch, min_length, max_length): docs = [] for record in batch: text = record["text"] if "tokens" in record: doc = Doc(nlp.vocab, words=record["tokens"]) else: doc = nlp.make_doc(text) if "heads" in record: heads = record["heads"] heads = numpy.asarray(heads, dtype="uint64") heads = heads.reshape((len(doc), 1)) doc = doc.from_array([HEAD], heads) if len(doc) >= min_length and len(doc) < max_length: docs.append(doc) return docs def get_vectors_loss(ops, docs, prediction, objective="L2"): """Compute a mean-squared error loss between the documents' vectors and the prediction. Note that this is ripe for customization! We could compute the vectors in some other word, e.g. with an LSTM language model, or use some other type of objective. """ # The simplest way to implement this would be to vstack the # token.vector values, but that's a bit inefficient, especially on GPU. # Instead we fetch the index into the vectors table for each of our tokens, # and look them up all at once. This prevents data copying. ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) target = docs[0].vocab.vectors.data[ids] if objective == "L2": d_scores = prediction - target loss = (d_scores ** 2).sum() else: raise NotImplementedError(objective) return loss, d_scores def create_pretraining_model(nlp, tok2vec): """Define a network for the pretraining. We simply add an output layer onto the tok2vec input model. The tok2vec input model needs to be a model that takes a batch of Doc objects (as a list), and returns a list of arrays. Each array in the output needs to have one row per token in the doc. """ output_size = nlp.vocab.vectors.data.shape[1] output_layer = chain( LN(Maxout(300, pieces=3)), Affine(output_size, drop_factor=0.0) ) # This is annoying, but the parser etc have the flatten step after # the tok2vec. To load the weights in cleanly, we need to match # the shape of the models' components exactly. So what we cann # "tok2vec" has to be the same set of processes as what the components do. tok2vec = chain(tok2vec, flatten) model = chain(tok2vec, output_layer) model = masked_language_model(nlp.vocab, model) model.tok2vec = tok2vec model.output_layer = output_layer model.begin_training([nlp.make_doc("Give it a doc to infer shapes")]) return model class ProgressTracker(object): def __init__(self, frequency=1000000): self.loss = 0.0 self.prev_loss = 0.0 self.nr_word = 0 self.words_per_epoch = Counter() self.frequency = frequency self.last_time = time.time() self.last_update = 0 self.epoch_loss = 0.0 def update(self, epoch, loss, docs): self.loss += loss self.epoch_loss += loss words_in_batch = sum(len(doc) for doc in docs) self.words_per_epoch[epoch] += words_in_batch self.nr_word += words_in_batch words_since_update = self.nr_word - self.last_update if words_since_update >= self.frequency: wps = words_since_update / (time.time() - self.last_time) self.last_update = self.nr_word self.last_time = time.time() loss_per_word = self.loss - self.prev_loss status = ( epoch, self.nr_word, _smart_round(self.loss, width=10), _smart_round(loss_per_word, width=6), int(wps), ) self.prev_loss = float(self.loss) return status else: return None def _smart_round(figure, width=10, max_decimal=4): """Round large numbers as integers, smaller numbers as decimals.""" n_digits = len(str(int(figure))) n_decimal = width - (n_digits + 1) if n_decimal <= 1: return str(int(figure)) else: n_decimal = min(n_decimal, max_decimal) format_str = "%." + str(n_decimal) + "f" return format_str % figure