import pytest import numpy from spacy.tokens import Doc, Span from spacy.vocab import Vocab from spacy.lexeme import Lexeme from spacy.lang.en import English from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH def test_doc_api_init(en_vocab): words = ["a", "b", "c", "d"] heads = [0, 0, 2, 2] # set sent_start by sent_starts doc = Doc(en_vocab, words=words, sent_starts=[True, False, True, False]) assert [t.is_sent_start for t in doc] == [True, False, True, False] # set sent_start by heads doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * 4) assert [t.is_sent_start for t in doc] == [True, False, True, False] # heads override sent_starts doc = Doc( en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4, ) assert [t.is_sent_start for t in doc] == [True, False, True, False] @pytest.mark.parametrize("text", [["one", "two", "three"]]) def test_doc_api_compare_by_string_position(en_vocab, text): doc = Doc(en_vocab, words=text) # Get the tokens in this order, so their ID ordering doesn't match the idx token3 = doc[-1] token2 = doc[-2] token1 = doc[-1] token1, token2, token3 = doc assert token1 < token2 < token3 assert not token1 > token2 assert token2 > token1 assert token2 <= token3 assert token3 >= token1 def test_doc_api_getitem(en_tokenizer): text = "Give it back! He pleaded." tokens = en_tokenizer(text) assert tokens[0].text == "Give" assert tokens[-1].text == "." with pytest.raises(IndexError): tokens[len(tokens)] def to_str(span): return "/".join(token.text for token in span) span = tokens[1:1] assert not to_str(span) span = tokens[1:4] assert to_str(span) == "it/back/!" span = tokens[1:4:1] assert to_str(span) == "it/back/!" with pytest.raises(ValueError): tokens[1:4:2] with pytest.raises(ValueError): tokens[1:4:-1] span = tokens[-3:6] assert to_str(span) == "He/pleaded" span = tokens[4:-1] assert to_str(span) == "He/pleaded" span = tokens[-5:-3] assert to_str(span) == "back/!" span = tokens[5:4] assert span.start == span.end == 5 and not to_str(span) span = tokens[4:-3] assert span.start == span.end == 4 and not to_str(span) span = tokens[:] assert to_str(span) == "Give/it/back/!/He/pleaded/." span = tokens[4:] assert to_str(span) == "He/pleaded/." span = tokens[:4] assert to_str(span) == "Give/it/back/!" span = tokens[:-3] assert to_str(span) == "Give/it/back/!" span = tokens[-3:] assert to_str(span) == "He/pleaded/." span = tokens[4:50] assert to_str(span) == "He/pleaded/." span = tokens[-50:4] assert to_str(span) == "Give/it/back/!" span = tokens[-50:-40] assert span.start == span.end == 0 and not to_str(span) span = tokens[40:50] assert span.start == span.end == 7 and not to_str(span) span = tokens[1:4] assert span[0].orth_ == "it" subspan = span[:] assert to_str(subspan) == "it/back/!" subspan = span[:2] assert to_str(subspan) == "it/back" subspan = span[1:] assert to_str(subspan) == "back/!" subspan = span[:-1] assert to_str(subspan) == "it/back" subspan = span[-2:] assert to_str(subspan) == "back/!" subspan = span[1:2] assert to_str(subspan) == "back" subspan = span[-2:-1] assert to_str(subspan) == "back" subspan = span[-50:50] assert to_str(subspan) == "it/back/!" subspan = span[50:-50] assert subspan.start == subspan.end == 4 and not to_str(subspan) @pytest.mark.parametrize( "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "] ) def test_doc_api_serialize(en_tokenizer, text): tokens = en_tokenizer(text) tokens[0].lemma_ = "lemma" tokens[0].norm_ = "norm" tokens.ents = [(tokens.vocab.strings["PRODUCT"], 0, 1)] tokens[0].ent_kb_id_ = "ent_kb_id" new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes()) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] assert new_tokens[0].lemma_ == "lemma" assert new_tokens[0].norm_ == "norm" assert new_tokens[0].ent_kb_id_ == "ent_kb_id" new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"] ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] def test_doc_api_set_ents(en_tokenizer): text = "I use goggle chrone to surf the web" tokens = en_tokenizer(text) assert len(tokens.ents) == 0 tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)] assert len(list(tokens.ents)) == 1 assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0] assert tokens.ents[0].label_ == "PRODUCT" assert tokens.ents[0].start == 2 assert tokens.ents[0].end == 4 def test_doc_api_sents_empty_string(en_tokenizer): doc = en_tokenizer("") sents = list(doc.sents) assert len(sents) == 0 def test_doc_api_runtime_error(en_tokenizer): # Example that caused run-time error while parsing Reddit # fmt: off text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school" deps = ["nummod", "nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "appos", "prep", "det", "amod", "pobj", "acl", "prep", "prep", "pobj", "", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = Doc(tokens.vocab, words=[t.text for t in tokens], deps=deps) nps = [] for np in doc.noun_chunks: while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"): np = np[1:] if len(np) > 1: nps.append(np) with doc.retokenize() as retokenizer: for np in nps: attrs = { "tag": np.root.tag_, "lemma": np.text, "ent_type": np.root.ent_type_, } retokenizer.merge(np, attrs=attrs) def test_doc_api_right_edge(en_vocab): """Test for bug occurring from Unshift action, causing incorrect right edge""" # fmt: off words = [ "I", "have", "proposed", "to", "myself", ",", "for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ",", "to", "translate", "those", "books", "into", "the", "Greek", "tongue", "." ] heads = [2, 2, 2, 2, 3, 2, 21, 8, 6, 8, 11, 8, 11, 12, 15, 13, 15, 18, 16, 12, 21, 2, 23, 21, 21, 27, 27, 24, 2] deps = ["dep"] * len(heads) # fmt: on doc = Doc(en_vocab, words=words, heads=heads, deps=deps) assert doc[6].text == "for" subtree = [w.text for w in doc[6].subtree] # fmt: off assert subtree == ["for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ","] # fmt: on assert doc[6].right_edge.text == "," def test_doc_api_has_vector(): vocab = Vocab() vocab.reset_vectors(width=2) vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f")) doc = Doc(vocab, words=["kitten"]) assert doc.has_vector def test_doc_api_similarity_match(): doc = Doc(Vocab(), words=["a"]) assert doc.similarity(doc[0]) == 1.0 assert doc.similarity(doc.vocab["a"]) == 1.0 doc2 = Doc(doc.vocab, words=["a", "b", "c"]) with pytest.warns(UserWarning): assert doc.similarity(doc2[:1]) == 1.0 assert doc.similarity(doc2) == 0.0 @pytest.mark.parametrize( "words,heads,lca_matrix", [ ( ["the", "lazy", "dog", "slept"], [2, 2, 3, 3], numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]), ), ( ["The", "lazy", "dog", "slept", ".", "The", "quick", "fox", "jumped"], [2, 2, 3, 3, 3, 7, 7, 8, 8], numpy.array( [ [0, 2, 2, 3, 3, -1, -1, -1, -1], [2, 1, 2, 3, 3, -1, -1, -1, -1], [2, 2, 2, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 4, -1, -1, -1, -1], [-1, -1, -1, -1, -1, 5, 7, 7, 8], [-1, -1, -1, -1, -1, 7, 6, 7, 8], [-1, -1, -1, -1, -1, 7, 7, 7, 8], [-1, -1, -1, -1, -1, 8, 8, 8, 8], ] ), ), ], ) def test_lowest_common_ancestor(en_vocab, words, heads, lca_matrix): doc = Doc(en_vocab, words, heads=heads, deps=["dep"] * len(heads)) lca = doc.get_lca_matrix() assert (lca == lca_matrix).all() assert lca[1, 1] == 1 assert lca[0, 1] == 2 assert lca[1, 2] == 2 def test_doc_is_nered(en_vocab): words = ["I", "live", "in", "New", "York"] doc = Doc(en_vocab, words=words) assert not doc.has_annotation("ENT_IOB") doc.ents = [Span(doc, 3, 5, label="GPE")] assert doc.has_annotation("ENT_IOB") # Test creating doc from array with unknown values arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64") doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr) assert doc.has_annotation("ENT_IOB") # Test serialization new_doc = Doc(en_vocab).from_bytes(doc.to_bytes()) assert new_doc.has_annotation("ENT_IOB") def test_doc_from_array_sent_starts(en_vocab): # fmt: off words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."] heads = [0, 0, 0, 0, 0, 0, 6, 6, 6, 6] deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep"] # fmt: on doc = Doc(en_vocab, words=words, heads=heads, deps=deps) # HEAD overrides SENT_START without warning attrs = [SENT_START, HEAD] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) # no warning using default attrs attrs = doc._get_array_attrs() arr = doc.to_array(attrs) with pytest.warns(None) as record: new_doc.from_array(attrs, arr) assert len(record) == 0 # only SENT_START uses SENT_START attrs = [SENT_START] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc] assert not new_doc.has_annotation("DEP") # only HEAD uses HEAD attrs = [HEAD, DEP] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc] assert new_doc.has_annotation("DEP") def test_doc_from_array_morph(en_vocab): # fmt: off words = ["I", "live", "in", "New", "York", "."] morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"] # fmt: on doc = Doc(en_vocab, words=words) for i, morph in enumerate(morphs): doc[i].morph_ = morph attrs = [MORPH] arr = doc.to_array(attrs) new_doc = Doc(en_vocab, words=words) new_doc.from_array(attrs, arr) assert [t.morph_ for t in new_doc] == morphs assert [t.morph_ for t in doc] == [t.morph_ for t in new_doc] def test_doc_api_from_docs(en_tokenizer, de_tokenizer): en_texts = ["Merging the docs is fun.", "", "They don't think alike."] en_texts_without_empty = [t for t in en_texts if len(t)] de_text = "Wie war die Frage?" en_docs = [en_tokenizer(text) for text in en_texts] docs_idx = en_texts[0].index("docs") de_doc = de_tokenizer(de_text) expected = (True, None, None, None) en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = expected assert Doc.from_docs([]) is None assert de_doc is not Doc.from_docs([de_doc]) assert str(de_doc) == str(Doc.from_docs([de_doc])) with pytest.raises(ValueError): Doc.from_docs(en_docs + [de_doc]) m_doc = Doc.from_docs(en_docs) assert len(en_texts_without_empty) == len(list(m_doc.sents)) assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1]) assert str(m_doc) == " ".join(en_texts_without_empty) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think") assert m_doc[9].idx == think_idx with pytest.raises(AttributeError): # not callable, because it was not set via set_extension m_doc[2]._.is_ambiguous assert len(m_doc.user_data) == len(en_docs[0].user_data) # but it's there m_doc = Doc.from_docs(en_docs, ensure_whitespace=False) assert len(en_texts_without_empty) == len(list(m_doc.sents)) assert len(str(m_doc)) == sum(len(t) for t in en_texts) assert str(m_doc) == "".join(en_texts) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and not bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 0 + en_texts[2].index("think") assert m_doc[9].idx == think_idx m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"]) assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1]) # space delimiter considered, although spacy attribute was missing assert str(m_doc) == " ".join(en_texts_without_empty) p_token = m_doc[len(en_docs[0]) - 1] assert p_token.text == "." and bool(p_token.whitespace_) en_docs_tokens = [t for doc in en_docs for t in doc] assert len(m_doc) == len(en_docs_tokens) think_idx = len(en_texts[0]) + 1 + en_texts[2].index("think") assert m_doc[9].idx == think_idx def test_doc_api_from_docs_ents(en_tokenizer): texts = ["Merging the docs is fun.", "They don't think alike."] docs = [en_tokenizer(t) for t in texts] docs[0].ents = () docs[1].ents = (Span(docs[1], 0, 1, label="foo"),) doc = Doc.from_docs(docs) assert len(doc.ents) == 1 def test_doc_lang(en_vocab): doc = Doc(en_vocab, words=["Hello", "world"]) assert doc.lang_ == "en" assert doc.lang == en_vocab.strings["en"] assert doc[0].lang_ == "en" assert doc[0].lang == en_vocab.strings["en"] nlp = English() doc = nlp("Hello world") assert doc.lang_ == "en" assert doc.lang == en_vocab.strings["en"] assert doc[0].lang_ == "en" assert doc[0].lang == en_vocab.strings["en"] def test_token_lexeme(en_vocab): """Test that tokens expose their lexeme.""" token = Doc(en_vocab, words=["Hello", "world"])[0] assert isinstance(token.lex, Lexeme) assert token.lex.text == token.text assert en_vocab[token.orth] == token.lex def test_has_annotation(en_vocab): doc = Doc(en_vocab, words=["Hello", "world"]) attrs = ("TAG", "POS", "MORPH", "LEMMA", "DEP", "HEAD", "ENT_IOB", "ENT_TYPE") for attr in attrs: assert not doc.has_annotation(attr) doc[0].tag_ = "A" doc[0].pos_ = "X" doc[0].morph_ = "Feat=Val" doc[0].lemma_ = "a" doc[0].dep_ = "dep" doc[0].head = doc[1] doc.ents = [Span(doc, 0, 1, label="HELLO")] for attr in attrs: assert doc.has_annotation(attr) assert not doc.has_annotation(attr, require_complete=True) doc[1].tag_ = "A" doc[1].pos_ = "X" doc[1].morph_ = "" doc[1].lemma_ = "a" doc[1].dep_ = "dep" doc.ents = [Span(doc, 0, 2, label="HELLO")] for attr in attrs: assert doc.has_annotation(attr) assert doc.has_annotation(attr, require_complete=True) def test_is_flags_deprecated(en_tokenizer): doc = en_tokenizer("test") with pytest.deprecated_call(): doc.is_tagged with pytest.deprecated_call(): doc.is_parsed with pytest.deprecated_call(): doc.is_nered with pytest.deprecated_call(): doc.is_sentenced