from __future__ import unicode_literals from ._state cimport State from ._state cimport has_head, get_idx, get_s0, get_n0, get_left, get_right from ._state cimport is_final, at_eol, pop_stack, push_stack, add_dep from ._state cimport head_in_buffer, children_in_buffer from ._state cimport head_in_stack, children_in_stack from ._state cimport count_left_kids from ..structs cimport TokenC from .transition_system cimport do_func_t, get_cost_func_t from ..gold cimport GoldParse DEF NON_MONOTONIC = True DEF USE_BREAK = True cdef weight_t MIN_SCORE = -90000 # Break transition from here # http://www.aclweb.org/anthology/P13-1074 cdef enum: SHIFT REDUCE LEFT RIGHT BREAK CONSTITUENT ADJUST N_MOVES MOVE_NAMES = [None] * N_MOVES MOVE_NAMES[SHIFT] = 'S' MOVE_NAMES[REDUCE] = 'D' MOVE_NAMES[LEFT] = 'L' MOVE_NAMES[RIGHT] = 'R' MOVE_NAMES[BREAK] = 'B' MOVE_NAMES[CONSTITUENT] = 'C' MOVE_NAMES[ADJUST] = 'A' cdef do_func_t[N_MOVES] do_funcs cdef get_cost_func_t[N_MOVES] get_cost_funcs cdef class ArcEager(TransitionSystem): @classmethod def get_labels(cls, gold_parses): move_labels = {SHIFT: {'': True}, REDUCE: {'': True}, RIGHT: {}, LEFT: {'ROOT': True}, BREAK: {'ROOT': True}, CONSTITUENT: {}, ADJUST: {'': True}} for raw_text, sents in gold_parses: for (ids, words, tags, heads, labels, iob), ctnts in sents: for child, head, label in zip(ids, heads, labels): if label != 'ROOT': if head < child: move_labels[RIGHT][label] = True elif head > child: move_labels[LEFT][label] = True for start, end, label in ctnts: move_labels[CONSTITUENT][label] = True return move_labels cdef int preprocess_gold(self, GoldParse gold) except -1: for i in range(gold.length): if gold.heads[i] is None: # Missing values gold.c_heads[i] = i gold.c_labels[i] = -1 else: gold.c_heads[i] = gold.heads[i] gold.c_labels[i] = self.strings[gold.labels[i]] for end, brackets in gold.brackets.items(): for start, label_strs in brackets.items(): gold.c_brackets[start][end] = 1 for label_str in label_strs: # Add the encoded label to the set gold.brackets[end][start].add(self.strings[label_str]) cdef Transition lookup_transition(self, object name) except *: if '-' in name: move_str, label_str = name.split('-', 1) label = self.label_ids[label_str] else: label = 0 move = MOVE_NAMES.index(move_str) for i in range(self.n_moves): if self.c[i].move == move and self.c[i].label == label: return self.c[i] def move_name(self, int move, int label): label_str = self.strings[label] if label_str: return MOVE_NAMES[move] + '-' + label_str else: return MOVE_NAMES[move] cdef Transition init_transition(self, int clas, int move, int label) except *: # TODO: Apparent Cython bug here when we try to use the Transition() # constructor with the function pointers cdef Transition t t.score = 0 t.clas = clas t.move = move t.label = label t.do = do_funcs[move] t.get_cost = get_cost_funcs[move] return t cdef int initialize_state(self, State* state) except -1: push_stack(state) cdef int finalize_state(self, State* state) except -1: cdef int root_label = self.strings['ROOT'] for i in range(state.sent_len): if state.sent[i].head == 0 and state.sent[i].dep == 0: state.sent[i].dep = root_label cdef bint* get_valid(self, const State* s) except NULL: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = _can_shift(s) is_valid[REDUCE] = _can_reduce(s) is_valid[LEFT] = _can_left(s) is_valid[RIGHT] = _can_right(s) is_valid[BREAK] = _can_break(s) is_valid[CONSTITUENT] = _can_constituent(s) is_valid[ADJUST] = _can_adjust(s) cdef int i for i in range(self.n_moves): self._is_valid[i] = is_valid[self.c[i].move] return self._is_valid cdef Transition best_valid(self, const weight_t* scores, const State* s) except *: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = _can_shift(s) is_valid[REDUCE] = _can_reduce(s) is_valid[LEFT] = _can_left(s) is_valid[RIGHT] = _can_right(s) is_valid[BREAK] = _can_break(s) is_valid[CONSTITUENT] = _can_constituent(s) is_valid[ADJUST] = _can_adjust(s) cdef Transition best cdef weight_t score = MIN_SCORE cdef int i for i in range(self.n_moves): if scores[i] > score and is_valid[self.c[i].move]: best = self.c[i] score = scores[i] assert best.clas < self.n_moves assert score > MIN_SCORE # Label Shift moves with the best Right-Arc label, for non-monotonic # actions if best.move == SHIFT: score = MIN_SCORE for i in range(self.n_moves): if self.c[i].move == RIGHT and scores[i] > score: best.label = self.c[i].label score = scores[i] return best cdef int _do_shift(const Transition* self, State* state) except -1: # Set the dep label, in case we need it after we reduce if NON_MONOTONIC: state.sent[state.i].dep = self.label push_stack(state) cdef int _do_left(const Transition* self, State* state) except -1: # Interpret left-arcs from EOL as attachment to root if at_eol(state): add_dep(state, state.stack[0], state.stack[0], self.label) else: add_dep(state, state.i, state.stack[0], self.label) pop_stack(state) cdef int _do_right(const Transition* self, State* state) except -1: add_dep(state, state.stack[0], state.i, self.label) push_stack(state) cdef int _do_reduce(const Transition* self, State* state) except -1: if NON_MONOTONIC and not has_head(get_s0(state)): add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep) pop_stack(state) cdef int _do_break(const Transition* self, State* state) except -1: state.sent[state.i-1].sent_end = True while state.stack_len != 0: if get_s0(state).head == 0: get_s0(state).dep = self.label state.stack -= 1 state.stack_len -= 1 if not at_eol(state): push_stack(state) cdef int _do_constituent(const Transition* self, State* state) except -1: return False #cdef Constituent* bracket = new_bracket(state.ctnts) #bracket.parent = NULL #bracket.label = self.label #bracket.head = get_s0(state) #bracket.length = 0 #attach(bracket, state.ctnts.stack) # Attach rightward children. They're in the brackets array somewhere # between here and B0. #cdef Constituent* node #cdef const TokenC* node_gov #for i in range(1, bracket - state.ctnts.stack): # node = bracket - i # node_gov = node.head + node.head.head # if node_gov == bracket.head: # attach(bracket, node) cdef int _do_adjust(const Transition* self, State* state) except -1: return False #cdef Constituent* b0 = state.ctnts.stack[0] #cdef Constituent* b1 = state.ctnts.stack[1] #assert (b1.head + b1.head.head) == b0.head #assert b0.head < b1.head #assert b0 < b1 #attach(b0, b1) ## Pop B1 from stack, but keep B0 on top #state.ctnts.stack -= 1 #state.ctnts.stack[0] = b0 do_funcs[SHIFT] = _do_shift do_funcs[REDUCE] = _do_reduce do_funcs[LEFT] = _do_left do_funcs[RIGHT] = _do_right do_funcs[BREAK] = _do_break do_funcs[CONSTITUENT] = _do_constituent do_funcs[ADJUST] = _do_adjust cdef int _shift_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_shift(s): return 9000 cost = 0 cost += head_in_stack(s, s.i, gold.c_heads) cost += children_in_stack(s, s.i, gold.c_heads) # If we can break, and there's no cost to doing so, we should if _can_break(s) and _break_cost(self, s, gold) == 0: cost += 1 return cost cdef int _right_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_right(s): return 9000 cost = 0 if gold.c_heads[s.i] == s.stack[0]: cost += self.label != gold.c_labels[s.i] return cost # This indicates missing head if gold.c_labels[s.i] != -1: cost += head_in_buffer(s, s.i, gold.c_heads) cost += children_in_stack(s, s.i, gold.c_heads) cost += head_in_stack(s, s.i, gold.c_heads) return cost cdef int _left_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_left(s): return 9000 cost = 0 if gold.c_heads[s.stack[0]] == s.i: cost += self.label != gold.c_labels[s.stack[0]] return cost # If we're at EOL, then the left arc will add an arc to ROOT. elif at_eol(s): # Are we root? if gold.c_labels[s.stack[0]] != -1: # If we're at EOL, prefer to reduce or break over left-arc if _can_reduce(s) or _can_break(s): cost += gold.c_heads[s.stack[0]] != s.stack[0] # Are we labelling correctly? cost += self.label != gold.c_labels[s.stack[0]] return cost cost += head_in_buffer(s, s.stack[0], gold.c_heads) cost += children_in_buffer(s, s.stack[0], gold.c_heads) if NON_MONOTONIC and s.stack_len >= 2: cost += gold.c_heads[s.stack[0]] == s.stack[-1] if gold.c_labels[s.stack[0]] != -1: cost += gold.c_heads[s.stack[0]] == s.stack[0] return cost cdef int _reduce_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_reduce(s): return 9000 cdef int cost = 0 cost += children_in_buffer(s, s.stack[0], gold.c_heads) if NON_MONOTONIC: cost += head_in_buffer(s, s.stack[0], gold.c_heads) return cost cdef int _break_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_break(s): return 9000 # When we break, we Reduce all of the words on the stack. cdef int cost = 0 # Number of deps between S0...Sn and N0...Nn for i in range(s.i, s.sent_len): cost += children_in_stack(s, i, gold.c_heads) cost += head_in_stack(s, i, gold.c_heads) return cost cdef int _constituent_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_constituent(s): return 9000 raise Exception("Constituent move should be disabled currently") # The gold standard is indexed by end, then by start, then a set of labels #brackets = gold.brackets(get_s0(s).r_edge, {}) #if not brackets: # return 2 # 2 loss for bad bracket, only 1 for good bracket bad label # Index the current brackets in the state #existing = set() #for i in range(s.ctnt_len): # if ctnt.end == s.r_edge and ctnt.label == self.label: # existing.add(ctnt.start) #cdef int loss = 2 #cdef const TokenC* child #cdef const TokenC* s0 = get_s0(s) #cdef int n_left = count_left_kids(s0) # Iterate over the possible start positions, and check whether we have a # (start, end, label) match to the gold tree #for i in range(1, n_left): # child = get_left(s, s0, i) # if child.l_edge in brackets and child.l_edge not in existing: # if self.label in brackets[child.l_edge] # return 0 # else: # loss = 1 # If we see the start position, set loss to 1 #return loss cdef int _adjust_cost(const Transition* self, const State* s, GoldParse gold) except -1: if not _can_adjust(s): return 9000 raise Exception("Adjust move should be disabled currently") # The gold standard is indexed by end, then by start, then a set of labels #gold_starts = gold.brackets(get_s0(s).r_edge, {}) # Case 1: There are 0 brackets ending at this word. # --> Cost is sunk, but must allow brackets to begin #if not gold_starts: # return 0 # Is the top bracket correct? #gold_labels = gold_starts.get(s.ctnt.start, set()) # TODO: Case where we have a unary rule # TODO: Case where two brackets end on this word, with top bracket starting # before #cdef const TokenC* child #cdef const TokenC* s0 = get_s0(s) #cdef int n_left = count_left_kids(s0) #cdef int i # Iterate over the possible start positions, and check whether we have a # (start, end, label) match to the gold tree #for i in range(1, n_left): # child = get_left(s, s0, i) # if child.l_edge in brackets: # if self.label in brackets[child.l_edge]: # return 0 # else: # loss = 1 # If we see the start position, set loss to 1 #return loss get_cost_funcs[SHIFT] = _shift_cost get_cost_funcs[REDUCE] = _reduce_cost get_cost_funcs[LEFT] = _left_cost get_cost_funcs[RIGHT] = _right_cost get_cost_funcs[BREAK] = _break_cost get_cost_funcs[CONSTITUENT] = _constituent_cost get_cost_funcs[ADJUST] = _adjust_cost cdef inline bint _can_shift(const State* s) nogil: return not at_eol(s) cdef inline bint _can_right(const State* s) nogil: return s.stack_len >= 1 and not at_eol(s) cdef inline bint _can_left(const State* s) nogil: if NON_MONOTONIC: return s.stack_len >= 1 #and not missing_brackets(s) else: return s.stack_len >= 1 and not has_head(get_s0(s)) cdef inline bint _can_reduce(const State* s) nogil: if NON_MONOTONIC: return s.stack_len >= 2 #and not missing_brackets(s) else: return s.stack_len >= 2 and has_head(get_s0(s)) cdef inline bint _can_break(const State* s) nogil: cdef int i if not USE_BREAK: return False elif at_eol(s): return False #elif NON_MONOTONIC: # return True else: # In the Break transition paper, they have this constraint that prevents # Break if stack is disconnected. But, if we're doing non-monotonic parsing, # we prefer to relax this constraint. This is helpful in parsing whole # documents, because then we don't get stuck with words on the stack. seen_headless = False for i in range(s.stack_len): if s.sent[s.stack[-i]].head == 0: if seen_headless: return False else: seen_headless = True # TODO: Constituency constraints return True cdef inline bint _can_constituent(const State* s) nogil: if s.stack_len < 1: return False return False #else: # # If all stack elements are popped, can't constituent # for i in range(s.ctnts.stack_len): # if not s.ctnts.is_popped[-i]: # return True # else: # return False cdef inline bint _can_adjust(const State* s) nogil: return False #if s.ctnts.stack_len < 2: # return False #cdef const Constituent* b1 = s.ctnts.stack[-1] #cdef const Constituent* b0 = s.ctnts.stack[0] #if (b1.head + b1.head.head) != b0.head: # return False #elif b0.head >= b1.head: # return False #elif b0 >= b1: # return False