# cython: infer_types=True, profile=True, binding=True from typing import List import numpy import srsly from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config from thinc.types import Floats2d import warnings from itertools import islice from ..tokens.doc cimport Doc from ..morphology cimport Morphology from ..vocab cimport Vocab from .pipe import Pipe, deserialize_config from ..language import Language from ..attrs import POS, ID from ..parts_of_speech import X from ..errors import Errors, TempErrors, Warnings from ..scorer import Scorer from ..training import validate_examples from .. import util default_model_config = """ [model] @architectures = "spacy.Tagger.v1" [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = null width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true """ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "tagger", assigns=["token.tag"], default_config={"model": DEFAULT_TAGGER_MODEL}, default_score_weights={"tag_acc": 1.0}, ) def make_tagger(nlp: Language, name: str, model: Model): """Construct a part-of-speech tagger component. model (Model[List[Doc], List[Floats2d]]): A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to 1). """ return Tagger(nlp.vocab, model, name) class Tagger(Pipe): """Pipeline component for part-of-speech tagging. DOCS: https://nightly.spacy.io/api/tagger """ def __init__(self, vocab, model, name="tagger", *, labels=None): """Initialize a part-of-speech tagger. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. labels (List): The set of labels. Defaults to None. DOCS: https://nightly.spacy.io/api/tagger#init """ self.vocab = vocab self.model = model self.name = name self._rehearsal_model = None cfg = {"labels": labels or []} self.cfg = dict(sorted(cfg.items())) @property def labels(self): """The labels currently added to the component. Note that even for a blank component, this will always include the built-in coarse-grained part-of-speech tags by default. RETURNS (Tuple[str]): The labels. DOCS: https://nightly.spacy.io/api/tagger#labels """ return tuple(self.cfg["labels"]) def __call__(self, doc): """Apply the pipe to a Doc. doc (Doc): The document to process. RETURNS (Doc): The processed Doc. DOCS: https://nightly.spacy.io/api/tagger#call """ tags = self.predict([doc]) self.set_annotations([doc], tags) return doc def pipe(self, stream, *, batch_size=128): """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://nightly.spacy.io/api/tagger#pipe """ for docs in util.minibatch(stream, size=batch_size): tag_ids = self.predict(docs) self.set_annotations(docs, tag_ids) yield from docs def predict(self, docs): """Apply the pipeline's model to a batch of docs, without modifying them. docs (Iterable[Doc]): The documents to predict. RETURNS: The models prediction for each document. DOCS: https://nightly.spacy.io/api/tagger#predict """ if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. n_labels = len(self.labels) guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs] assert len(guesses) == len(docs) return guesses scores = self.model.predict(docs) assert len(scores) == len(docs), (len(scores), len(docs)) guesses = self._scores2guesses(scores) assert len(guesses) == len(docs) return guesses def _scores2guesses(self, scores): guesses = [] for doc_scores in scores: doc_guesses = doc_scores.argmax(axis=1) if not isinstance(doc_guesses, numpy.ndarray): doc_guesses = doc_guesses.get() guesses.append(doc_guesses) return guesses def set_annotations(self, docs, batch_tag_ids): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. batch_tag_ids: The IDs to set, produced by Tagger.predict. DOCS: https://nightly.spacy.io/api/tagger#set_annotations """ if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): # Don't clobber preset POS tags if doc.c[j].tag == 0: doc.c[j].tag = self.vocab.strings[self.labels[tag_id]] def update(self, examples, *, drop=0., sgd=None, losses=None, set_annotations=False): """Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to predict and get_loss. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. set_annotations (bool): Whether or not to update the Example objects with the predictions. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://nightly.spacy.io/api/tagger#update """ if losses is None: losses = {} losses.setdefault(self.name, 0.0) validate_examples(examples, "Tagger.update") if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples): # Handle cases where there are no tokens in any docs. return set_dropout_rate(self.model, drop) tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples]) for sc in tag_scores: if self.model.ops.xp.isnan(sc.sum()): raise ValueError(Errors.E940) loss, d_tag_scores = self.get_loss(examples, tag_scores) bp_tag_scores(d_tag_scores) if sgd not in (None, False): self.model.finish_update(sgd) losses[self.name] += loss if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, self._scores2guesses(tag_scores)) return losses def rehearse(self, examples, *, drop=0., sgd=None, losses=None): """Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model, to try to address the "catastrophic forgetting" problem. This feature is experimental. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://nightly.spacy.io/api/tagger#rehearse """ validate_examples(examples, "Tagger.rehearse") docs = [eg.predicted for eg in examples] if self._rehearsal_model is None: return if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. return set_dropout_rate(self.model, drop) guesses, backprop = self.model.begin_update(docs) target = self._rehearsal_model(examples) gradient = guesses - target backprop(gradient) self.model.finish_update(sgd) if losses is not None: losses.setdefault(self.name, 0.0) losses[self.name] += (gradient**2).sum() def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETUTNRS (Tuple[float, float]): The loss and the gradient. DOCS: https://nightly.spacy.io/api/tagger#get_loss """ validate_examples(examples, "Tagger.get_loss") loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False) truths = [eg.get_aligned("TAG", as_string=True) for eg in examples] d_scores, loss = loss_func(scores, truths) if self.model.ops.xp.isnan(loss): raise ValueError("nan value when computing loss") return float(loss), d_scores def initialize(self, get_examples, *, pipeline=None): """Initialize the pipe for training, using a representative set of data examples. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects.. pipeline (List[Tuple[str, Callable]]): Optional list of pipeline components that this component is part of. Corresponds to nlp.pipeline. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://nightly.spacy.io/api/tagger#initialize """ self._ensure_examples(get_examples) doc_sample = [] label_sample = [] tags = set() for example in get_examples(): for token in example.y: if token.tag_: tags.add(token.tag_) for tag in sorted(tags): self.add_label(tag) for example in islice(get_examples(), 10): doc_sample.append(example.x) gold_tags = example.get_aligned("TAG", as_string=True) gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags] label_sample.append(self.model.ops.asarray(gold_array, dtype="float32")) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) def add_label(self, label): """Add a new label to the pipe. label (str): The label to add. RETURNS (int): 0 if label is already present, otherwise 1. DOCS: https://nightly.spacy.io/api/tagger#add_label """ if not isinstance(label, str): raise ValueError(Errors.E187) if label in self.labels: return 0 self._allow_extra_label() self.cfg["labels"].append(label) self.vocab.strings.add(label) return 1 def score(self, examples, **kwargs): """Score a batch of examples. examples (Iterable[Example]): The examples to score. RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_token_attr for the attributes "tag". DOCS: https://nightly.spacy.io/api/tagger#score """ validate_examples(examples, "Tagger.score") return Scorer.score_token_attr(examples, "tag", **kwargs) def to_bytes(self, *, exclude=tuple()): """Serialize the pipe to a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. DOCS: https://nightly.spacy.io/api/tagger#to_bytes """ serialize = {} serialize["model"] = self.model.to_bytes serialize["vocab"] = self.vocab.to_bytes serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load the pipe from a bytestring. bytes_data (bytes): The serialized pipe. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Tagger): The loaded Tagger. DOCS: https://nightly.spacy.io/api/tagger#from_bytes """ def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) from None deserialize = { "vocab": lambda b: self.vocab.from_bytes(b), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: load_model(b), } util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, *, exclude=tuple()): """Serialize the pipe to disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://nightly.spacy.io/api/tagger#to_disk """ serialize = { "vocab": lambda p: self.vocab.to_disk(p), "model": lambda p: self.model.to_disk(p), "cfg": lambda p: srsly.write_json(p, self.cfg), } util.to_disk(path, serialize, exclude) def from_disk(self, path, *, exclude=tuple()): """Load the pipe from disk. Modifies the object in place and returns it. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Tagger): The modified Tagger object. DOCS: https://nightly.spacy.io/api/tagger#from_disk """ def load_model(p): with p.open("rb") as file_: try: self.model.from_bytes(file_.read()) except AttributeError: raise ValueError(Errors.E149) from None deserialize = { "vocab": lambda p: self.vocab.from_disk(p), "cfg": lambda p: self.cfg.update(deserialize_config(p)), "model": load_model, } util.from_disk(path, deserialize, exclude) return self