import pytest from spacy.pipeline import Pipe from spacy.matcher import PhraseMatcher, Matcher from spacy.tokens import Doc, Span, DocBin from spacy.gold import Example, Corpus from spacy.gold.converters import json2docs from spacy.vocab import Vocab from spacy.lang.en import English from spacy.util import minibatch, ensure_path, load_model from spacy.util import compile_prefix_regex, compile_suffix_regex, compile_infix_regex from spacy.tokenizer import Tokenizer from spacy.lang.el import Greek from spacy.language import Language import spacy from thinc.api import compounding from collections import defaultdict from ..util import make_tempdir def test_issue4002(en_vocab): """Test that the PhraseMatcher can match on overwritten NORM attributes. """ matcher = PhraseMatcher(en_vocab, attr="NORM") pattern1 = Doc(en_vocab, words=["c", "d"]) assert [t.norm_ for t in pattern1] == ["c", "d"] matcher.add("TEST", [pattern1]) doc = Doc(en_vocab, words=["a", "b", "c", "d"]) assert [t.norm_ for t in doc] == ["a", "b", "c", "d"] matches = matcher(doc) assert len(matches) == 1 matcher = PhraseMatcher(en_vocab, attr="NORM") pattern2 = Doc(en_vocab, words=["1", "2"]) pattern2[0].norm_ = "c" pattern2[1].norm_ = "d" assert [t.norm_ for t in pattern2] == ["c", "d"] matcher.add("TEST", [pattern2]) matches = matcher(doc) assert len(matches) == 1 def test_issue4030(): """ Test whether textcat works fine with empty doc """ unique_classes = ["offensive", "inoffensive"] x_train = [ "This is an offensive text", "This is the second offensive text", "inoff", ] y_train = ["offensive", "offensive", "inoffensive"] nlp = spacy.blank("en") # preparing the data train_data = [] for text, train_instance in zip(x_train, y_train): cat_dict = {label: label == train_instance for label in unique_classes} train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) # add a text categorizer component model = { "@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": False, } textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) for label in unique_classes: textcat.add_label(label) # training the network with nlp.select_pipes(enable="textcat"): optimizer = nlp.begin_training() for i in range(3): losses = {} batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update( examples=batch, sgd=optimizer, drop=0.1, losses=losses, ) # processing of an empty doc should result in 0.0 for all categories doc = nlp("") assert doc.cats["offensive"] == 0.0 assert doc.cats["inoffensive"] == 0.0 def test_issue4042(): """Test that serialization of an EntityRuler before NER works fine.""" nlp = English() # add ner pipe ner = nlp.add_pipe("ner") ner.add_label("SOME_LABEL") nlp.begin_training() # Add entity ruler patterns = [ {"label": "MY_ORG", "pattern": "Apple"}, {"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}, ] # works fine with "after" ruler = nlp.add_pipe("entity_ruler", before="ner") ruler.add_patterns(patterns) doc1 = nlp("What do you think about Apple ?") assert doc1.ents[0].label_ == "MY_ORG" with make_tempdir() as d: output_dir = ensure_path(d) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) nlp2 = load_model(output_dir) doc2 = nlp2("What do you think about Apple ?") assert doc2.ents[0].label_ == "MY_ORG" def test_issue4042_bug2(): """ Test that serialization of an NER works fine when new labels were added. This is the second bug of two bugs underlying the issue 4042. """ nlp1 = English() # add ner pipe ner1 = nlp1.add_pipe("ner") ner1.add_label("SOME_LABEL") nlp1.begin_training() # add a new label to the doc doc1 = nlp1("What do you think about Apple ?") assert len(ner1.labels) == 1 assert "SOME_LABEL" in ner1.labels apple_ent = Span(doc1, 5, 6, label="MY_ORG") doc1.ents = list(doc1.ents) + [apple_ent] # reapply the NER - at this point it should resize itself ner1(doc1) assert len(ner1.labels) == 2 assert "SOME_LABEL" in ner1.labels assert "MY_ORG" in ner1.labels with make_tempdir() as d: # assert IO goes fine output_dir = ensure_path(d) if not output_dir.exists(): output_dir.mkdir() ner1.to_disk(output_dir) config = {} ner2 = nlp1.create_pipe("ner", config=config) ner2.from_disk(output_dir) assert len(ner2.labels) == 2 def test_issue4054(en_vocab): """Test that a new blank model can be made with a vocab from file, and that serialization does not drop the language at any point.""" nlp1 = English() vocab1 = nlp1.vocab with make_tempdir() as d: vocab_dir = ensure_path(d / "vocab") if not vocab_dir.exists(): vocab_dir.mkdir() vocab1.to_disk(vocab_dir) vocab2 = Vocab().from_disk(vocab_dir) nlp2 = spacy.blank("en", vocab=vocab2) nlp_dir = ensure_path(d / "nlp") if not nlp_dir.exists(): nlp_dir.mkdir() nlp2.to_disk(nlp_dir) nlp3 = load_model(nlp_dir) assert nlp3.lang == "en" def test_issue4120(en_vocab): """Test that matches without a final {OP: ?} token are returned.""" matcher = Matcher(en_vocab) matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}]]) doc1 = Doc(en_vocab, words=["a"]) assert len(matcher(doc1)) == 1 # works doc2 = Doc(en_vocab, words=["a", "b", "c"]) assert len(matcher(doc2)) == 2 # fixed matcher = Matcher(en_vocab) matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b"}]]) doc3 = Doc(en_vocab, words=["a", "b", "b", "c"]) assert len(matcher(doc3)) == 2 # works matcher = Matcher(en_vocab) matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b", "OP": "?"}]]) doc4 = Doc(en_vocab, words=["a", "b", "b", "c"]) assert len(matcher(doc4)) == 3 # fixed def test_issue4133(en_vocab): nlp = English() vocab_bytes = nlp.vocab.to_bytes() words = ["Apple", "is", "looking", "at", "buying", "a", "startup"] pos = ["NOUN", "VERB", "ADP", "VERB", "PROPN", "NOUN", "ADP"] doc = Doc(en_vocab, words=words) for i, token in enumerate(doc): token.pos_ = pos[i] # usually this is already True when starting from proper models instead of blank English doc.is_tagged = True doc_bytes = doc.to_bytes() vocab = Vocab() vocab = vocab.from_bytes(vocab_bytes) doc = Doc(vocab).from_bytes(doc_bytes) actual = [] for token in doc: actual.append(token.pos_) assert actual == pos def test_issue4190(): def customize_tokenizer(nlp): prefix_re = compile_prefix_regex(nlp.Defaults.prefixes) suffix_re = compile_suffix_regex(nlp.Defaults.suffixes) infix_re = compile_infix_regex(nlp.Defaults.infixes) # Remove all exceptions where a single letter is followed by a period (e.g. 'h.') exceptions = { k: v for k, v in dict(nlp.Defaults.tokenizer_exceptions).items() if not (len(k) == 2 and k[1] == ".") } new_tokenizer = Tokenizer( nlp.vocab, exceptions, prefix_search=prefix_re.search, suffix_search=suffix_re.search, infix_finditer=infix_re.finditer, token_match=nlp.tokenizer.token_match, ) nlp.tokenizer = new_tokenizer test_string = "Test c." # Load default language nlp_1 = English() doc_1a = nlp_1(test_string) result_1a = [token.text for token in doc_1a] # noqa: F841 # Modify tokenizer customize_tokenizer(nlp_1) doc_1b = nlp_1(test_string) result_1b = [token.text for token in doc_1b] # Save and Reload with make_tempdir() as model_dir: nlp_1.to_disk(model_dir) nlp_2 = load_model(model_dir) # This should be the modified tokenizer doc_2 = nlp_2(test_string) result_2 = [token.text for token in doc_2] assert result_1b == result_2 def test_issue4267(): """ Test that running an entity_ruler after ner gives consistent results""" nlp = English() ner = nlp.add_pipe("ner") ner.add_label("PEOPLE") nlp.begin_training() assert "ner" in nlp.pipe_names # assert that we have correct IOB annotations doc1 = nlp("hi") assert doc1.is_nered for token in doc1: assert token.ent_iob == 2 # add entity ruler and run again patterns = [{"label": "SOFTWARE", "pattern": "spacy"}] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) assert "entity_ruler" in nlp.pipe_names assert "ner" in nlp.pipe_names # assert that we still have correct IOB annotations doc2 = nlp("hi") assert doc2.is_nered for token in doc2: assert token.ent_iob == 2 @pytest.mark.skip(reason="lemmatizer lookups no longer in vocab") def test_issue4272(): """Test that lookup table can be accessed from Token.lemma if no POS tags are available.""" nlp = Greek() doc = nlp("Χθες") assert doc[0].lemma_ def test_multiple_predictions(): class DummyPipe(Pipe): def __init__(self): self.model = "dummy_model" def predict(self, docs): return ([1, 2, 3], [4, 5, 6]) def set_annotations(self, docs, scores): return docs nlp = Language() doc = nlp.make_doc("foo") dummy_pipe = DummyPipe() dummy_pipe(doc) @pytest.mark.skip(reason="removed Beam stuff during the Example/GoldParse refactor") def test_issue4313(): """ This should not crash or exit with some strange error code """ beam_width = 16 beam_density = 0.0001 nlp = English() config = {} ner = nlp.create_pipe("ner", config=config) ner.add_label("SOME_LABEL") ner.begin_training(lambda: []) # add a new label to the doc doc = nlp("What do you think about Apple ?") assert len(ner.labels) == 1 assert "SOME_LABEL" in ner.labels apple_ent = Span(doc, 5, 6, label="MY_ORG") doc.ents = list(doc.ents) + [apple_ent] # ensure the beam_parse still works with the new label docs = [doc] beams = nlp.entity.beam_parse( docs, beam_width=beam_width, beam_density=beam_density ) for doc, beam in zip(docs, beams): entity_scores = defaultdict(float) for score, ents in nlp.entity.moves.get_beam_parses(beam): for start, end, label in ents: entity_scores[(start, end, label)] += score def test_issue4348(): """Test that training the tagger with empty data, doesn't throw errors""" nlp = English() example = Example.from_dict(nlp.make_doc(""), {"tags": []}) TRAIN_DATA = [example, example] tagger = nlp.add_pipe("tagger") tagger.add_label("A") optimizer = nlp.begin_training() for i in range(5): losses = {} batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(batch, sgd=optimizer, losses=losses) def test_issue4367(): """Test that docbin init goes well""" DocBin() DocBin(attrs=["LEMMA"]) DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"]) def test_issue4373(): """Test that PhraseMatcher.vocab can be accessed (like Matcher.vocab).""" matcher = Matcher(Vocab()) assert isinstance(matcher.vocab, Vocab) matcher = PhraseMatcher(Vocab()) assert isinstance(matcher.vocab, Vocab) def test_issue4402(): json_data = { "id": 0, "paragraphs": [ { "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.", "sentences": [ { "tokens": [ {"id": 0, "orth": "How", "ner": "O"}, {"id": 1, "orth": "should", "ner": "O"}, {"id": 2, "orth": "I", "ner": "O"}, {"id": 3, "orth": "cook", "ner": "O"}, {"id": 4, "orth": "bacon", "ner": "O"}, {"id": 5, "orth": "in", "ner": "O"}, {"id": 6, "orth": "an", "ner": "O"}, {"id": 7, "orth": "oven", "ner": "O"}, {"id": 8, "orth": "?", "ner": "O"}, ], "brackets": [], }, { "tokens": [ {"id": 9, "orth": "\n", "ner": "O"}, {"id": 10, "orth": "I", "ner": "O"}, {"id": 11, "orth": "'ve", "ner": "O"}, {"id": 12, "orth": "heard", "ner": "O"}, {"id": 13, "orth": "of", "ner": "O"}, {"id": 14, "orth": "people", "ner": "O"}, {"id": 15, "orth": "cooking", "ner": "O"}, {"id": 16, "orth": "bacon", "ner": "O"}, {"id": 17, "orth": "in", "ner": "O"}, {"id": 18, "orth": "an", "ner": "O"}, {"id": 19, "orth": "oven", "ner": "O"}, {"id": 20, "orth": ".", "ner": "O"}, ], "brackets": [], }, ], "cats": [ {"label": "baking", "value": 1.0}, {"label": "not_baking", "value": 0.0}, ], }, { "raw": "What is the difference between white and brown eggs?\n", "sentences": [ { "tokens": [ {"id": 0, "orth": "What", "ner": "O"}, {"id": 1, "orth": "is", "ner": "O"}, {"id": 2, "orth": "the", "ner": "O"}, {"id": 3, "orth": "difference", "ner": "O"}, {"id": 4, "orth": "between", "ner": "O"}, {"id": 5, "orth": "white", "ner": "O"}, {"id": 6, "orth": "and", "ner": "O"}, {"id": 7, "orth": "brown", "ner": "O"}, {"id": 8, "orth": "eggs", "ner": "O"}, {"id": 9, "orth": "?", "ner": "O"}, ], "brackets": [], }, {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []}, ], "cats": [ {"label": "baking", "value": 0.0}, {"label": "not_baking", "value": 1.0}, ], }, ], } nlp = English() attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"] with make_tempdir() as tmpdir: output_file = tmpdir / "test4402.spacy" docs = json2docs([json_data]) data = DocBin(docs=docs, attrs=attrs).to_bytes() with output_file.open("wb") as file_: file_.write(data) reader = Corpus(output_file) train_data = list(reader(nlp)) assert len(train_data) == 2 split_train_data = [] for eg in train_data: split_train_data.extend(eg.split_sents()) assert len(split_train_data) == 4