--- title: Lexeme teaser: An entry in the vocabulary tag: class source: spacy/lexeme.pyx --- A `Lexeme` has no string context – it's a word type, as opposed to a word token. It therefore has no part-of-speech tag, dependency parse, or lemma (if lemmatization depends on the part-of-speech tag). ## Lexeme.\_\_init\_\_ {#init tag="method"} Create a `Lexeme` object. | Name | Type | Description | | ----------- | -------- | ----------------------------- | | `vocab` | `Vocab` | The parent vocabulary. | | `orth` | int | The orth id of the lexeme. | | **RETURNS** | `Lexeme` | The newly constructed object. | ## Lexeme.set_flag {#set_flag tag="method"} Change the value of a boolean flag. > #### Example > > ```python > COOL_FLAG = nlp.vocab.add_flag(lambda text: False) > nlp.vocab["spaCy"].set_flag(COOL_FLAG, True) > ``` | Name | Type | Description | | --------- | ---- | ------------------------------------ | | `flag_id` | int | The attribute ID of the flag to set. | | `value` | bool | The new value of the flag. | ## Lexeme.check_flag {#check_flag tag="method"} Check the value of a boolean flag. > #### Example > > ```python > is_my_library = lambda text: text in ["spaCy", "Thinc"] > MY_LIBRARY = nlp.vocab.add_flag(is_my_library) > assert nlp.vocab["spaCy"].check_flag(MY_LIBRARY) == True > ``` | Name | Type | Description | | ----------- | ---- | -------------------------------------- | | `flag_id` | int | The attribute ID of the flag to query. | | **RETURNS** | bool | The value of the flag. | ## Lexeme.similarity {#similarity tag="method" model="vectors"} Compute a semantic similarity estimate. Defaults to cosine over vectors. > #### Example > > ```python > apple = nlp.vocab["apple"] > orange = nlp.vocab["orange"] > apple_orange = apple.similarity(orange) > orange_apple = orange.similarity(apple) > assert apple_orange == orange_apple > ``` | Name | Type | Description | | ----------- | ----- | -------------------------------------------------------------------------------------------- | | other | - | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. | | **RETURNS** | float | A scalar similarity score. Higher is more similar. | ## Lexeme.has_vector {#has_vector tag="property" model="vectors"} A boolean value indicating whether a word vector is associated with the lexeme. > #### Example > > ```python > apple = nlp.vocab["apple"] > assert apple.has_vector > ``` | Name | Type | Description | | ----------- | ---- | ---------------------------------------------- | | **RETURNS** | bool | Whether the lexeme has a vector data attached. | ## Lexeme.vector {#vector tag="property" model="vectors"} A real-valued meaning representation. > #### Example > > ```python > apple = nlp.vocab["apple"] > assert apple.vector.dtype == "float32" > assert apple.vector.shape == (300,) > ``` | Name | Type | Description | | ----------- | ---------------------------------------- | ----------------------------------------------------- | | **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the lexeme's semantics. | ## Lexeme.vector_norm {#vector_norm tag="property" model="vectors"} The L2 norm of the lexeme's vector representation. > #### Example > > ```python > apple = nlp.vocab["apple"] > pasta = nlp.vocab["pasta"] > apple.vector_norm # 7.1346845626831055 > pasta.vector_norm # 7.759851932525635 > assert apple.vector_norm != pasta.vector_norm > ``` | Name | Type | Description | | ----------- | ----- | ----------------------------------------- | | **RETURNS** | float | The L2 norm of the vector representation. | ## Attributes {#attributes} | Name | Type | Description | | -------------------------------------------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `vocab` | `Vocab` | The lexeme's vocabulary. | | `text` | str | Verbatim text content. | | `orth` | int | ID of the verbatim text content. | | `orth_` | str | Verbatim text content (identical to `Lexeme.text`). Exists mostly for consistency with the other attributes. | | `rank` | int | Sequential ID of the lexemes's lexical type, used to index into tables, e.g. for word vectors. | | `flags` | int | Container of the lexeme's binary flags. | | `norm` | int | The lexemes's norm, i.e. a normalized form of the lexeme text. | | `norm_` | str | The lexemes's norm, i.e. a normalized form of the lexeme text. | | `lower` | int | Lowercase form of the word. | | `lower_` | str | Lowercase form of the word. | | `shape` | int | Transform of the words's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. | | `shape_` | str | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. | | `prefix` | int | Length-N substring from the start of the word. Defaults to `N=1`. | | `prefix_` | str | Length-N substring from the start of the word. Defaults to `N=1`. | | `suffix` | int | Length-N substring from the end of the word. Defaults to `N=3`. | | `suffix_` | str | Length-N substring from the start of the word. Defaults to `N=3`. | | `is_alpha` | bool | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`. | | `is_ascii` | bool | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`. | | `is_digit` | bool | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`. | | `is_lower` | bool | Is the lexeme in lowercase? Equivalent to `lexeme.text.islower()`. | | `is_upper` | bool | Is the lexeme in uppercase? Equivalent to `lexeme.text.isupper()`. | | `is_title` | bool | Is the lexeme in titlecase? Equivalent to `lexeme.text.istitle()`. | | `is_punct` | bool | Is the lexeme punctuation? | | `is_left_punct` | bool | Is the lexeme a left punctuation mark, e.g. `(`? | | `is_right_punct` | bool | Is the lexeme a right punctuation mark, e.g. `)`? | | `is_space` | bool | Does the lexeme consist of whitespace characters? Equivalent to `lexeme.text.isspace()`. | | `is_bracket` | bool | Is the lexeme a bracket? | | `is_quote` | bool | Is the lexeme a quotation mark? | | `is_currency` 2.0.8 | bool | Is the lexeme a currency symbol? | | `like_url` | bool | Does the lexeme resemble a URL? | | `like_num` | bool | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc. | | `like_email` | bool | Does the lexeme resemble an email address? | | `is_oov` | bool | Is the lexeme out-of-vocabulary? | | `is_stop` | bool | Is the lexeme part of a "stop list"? | | `lang` | int | Language of the parent vocabulary. | | `lang_` | str | Language of the parent vocabulary. | | `prob` | float | Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary). | | `cluster` | int | Brown cluster ID. | | `sentiment` | float | A scalar value indicating the positivity or negativity of the lexeme. |