# -*- coding: utf-8 -*- """Sphinx doctest is just too hard. Manually paste doctest examples here""" from spacy.en.attrs import IS_LOWER import pytest @pytest.mark.models def test_1(): import spacy.en from spacy.parts_of_speech import ADV # Load the pipeline, and call it with some text. nlp = spacy.en.English() tokens = nlp(u"‘Give it back,’ he pleaded abjectly, ‘it’s mine.’", tag=True, parse=False) o = u''.join(tok.string.upper() if tok.pos == ADV else tok.string for tok in tokens) assert u"‘Give it BACK,’ he pleaded ABJECTLY, ‘it’s mine.’" o = nlp.vocab[u'back'].prob assert o == -7.403977394104004 o = nlp.vocab[u'not'].prob assert o == -5.407193660736084 o = nlp.vocab[u'quietly'].prob assert o == -11.07155704498291 @pytest.mark.models def test2(): import spacy.en from spacy.parts_of_speech import ADV nlp = spacy.en.English() # Find log probability of Nth most frequent word probs = [lex.prob for lex in nlp.vocab] probs.sort() is_adverb = lambda tok: tok.pos == ADV and tok.prob < probs[-1000] tokens = nlp(u"‘Give it back,’ he pleaded abjectly, ‘it’s mine.’") o = u''.join(tok.string.upper() if is_adverb(tok) else tok.string for tok in tokens) o == u'‘Give it back,’ he pleaded ABJECTLY, ‘it’s mine.’' nlp.vocab[u'back'].prob -7.403977394104004 nlp.vocab[u'not'].prob -5.407193660736084 nlp.vocab[u'quietly'].prob -11.07155704498291 @pytest.mark.models def test3(): import spacy.en from spacy.parts_of_speech import ADV nlp = spacy.en.English() # Find log probability of Nth most frequent word probs = [lex.prob for lex in nlp.vocab] probs.sort() is_adverb = lambda tok: tok.pos == ADV and tok.prob < probs[-1000] tokens = nlp(u"‘Give it back,’ he pleaded abjectly, ‘it’s mine.’") o = u''.join(tok.string.upper() if is_adverb(tok) else tok.string for tok in tokens) assert o == u'‘Give it back,’ he pleaded ABJECTLY, ‘it’s mine.’' pleaded = tokens[7] assert pleaded.repvec.shape == (300,) o = pleaded.repvec[:5] assert sum(o) != 0 from numpy import dot from numpy.linalg import norm cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2)) words = [w for w in nlp.vocab if w.check(IS_LOWER) and w.has_repvec] words.sort(key=lambda w: cosine(w.repvec, pleaded.repvec)) words.reverse() o = [w.orth_ for w in words[0:20]] assert o == [u'pleaded', u'pled', u'plead', u'confessed', u'interceded', u'pleads', u'testified', u'conspired', u'motioned', u'demurred', u'countersued', u'remonstrated', u'begged', u'apologised', u'consented', u'acquiesced', u'petitioned', u'quarreled', u'appealed', u'pleading'] o = [w.orth_ for w in words[50:60]] assert o == [u'counselled', u'bragged', u'backtracked', u'caucused', u'refiled', u'dueled', u'mused', u'dissented', u'yearned', u'confesses'] o = [w.orth_ for w in words[100:110]] assert o == [u'cabled', u'ducked', u'sentenced', u'perjured', u'absconded', u'bargained', u'overstayed', u'clerked', u'confided', u'sympathizes'] #o = [w.orth_ for w in words[1000:1010]] #assert o == [u'scorned', u'baled', u'righted', u'requested', u'swindled', # u'posited', u'firebombed', u'slimed', u'deferred', u'sagged'] #o = [w.orth_ for w in words[50000:50010]] #assert o == [u'fb', u'ford', u'systems', u'puck', u'anglers', u'ik', u'tabloid', # u'dirty', u'rims', u'artists']