"""Set up a model directory. Requires: lang_data --- Rules for the tokenizer * prefix.txt * suffix.txt * infix.txt * morphs.json * specials.json corpora --- Data files * WordNet * words.sgt.prob --- Smoothed unigram probabilities * clusters.txt --- Output of hierarchical clustering, e.g. Brown clusters * vectors.tgz --- output of something like word2vec """ from __future__ import unicode_literals from ast import literal_eval import math import plac from pathlib import Path from shutil import copyfile from shutil import copytree import codecs from collections import defaultdict from spacy.en import get_lex_props from spacy.en.lemmatizer import Lemmatizer from spacy.vocab import Vocab from spacy.vocab import write_binary_vectors from spacy.strings import hash_string from preshed.counter import PreshCounter from spacy.parts_of_speech import NOUN, VERB, ADJ def setup_tokenizer(lang_data_dir, tok_dir): if not tok_dir.exists(): tok_dir.mkdir() for filename in ('infix.txt', 'morphs.json', 'prefix.txt', 'specials.json', 'suffix.txt'): src = lang_data_dir / filename dst = tok_dir / filename if not dst.exists(): copyfile(str(src), str(dst)) def _read_clusters(loc): if not loc.exists(): print("Warning: Clusters file not found") return {} clusters = {} for line in codecs.open(str(loc), 'r', 'utf8'): try: cluster, word, freq = line.split() except ValueError: continue # If the clusterer has only seen the word a few times, its cluster is # unreliable. if int(freq) >= 3: clusters[word] = cluster else: clusters[word] = '0' # Expand clusters with re-casing for word, cluster in list(clusters.items()): if word.lower() not in clusters: clusters[word.lower()] = cluster if word.title() not in clusters: clusters[word.title()] = cluster if word.upper() not in clusters: clusters[word.upper()] = cluster return clusters def _read_probs(loc): if not loc.exists(): print("Warning: Probabilities file not found") return {} probs = {} for i, line in enumerate(codecs.open(str(loc), 'r', 'utf8')): prob, word = line.split() prob = float(prob) probs[word] = prob return probs def _read_freqs(loc): if not loc.exists(): print("Warning: Frequencies file not found") return None counts = PreshCounter() total = 0 for i, line in enumerate(loc.open()): freq, doc_freq, key = line.split('\t', 2) freq = int(freq) counts.inc(i+1, freq) total += freq counts.smooth() log_total = math.log(total) probs = {} for line in loc.open(): freq, doc_freq, key = line.split('\t', 2) if int(doc_freq) >= 2 and int(freq) >= 5 and len(key) < 200: word = literal_eval(key) smooth_count = counts.smoother(int(freq)) log_smooth_count = math.log(smooth_count) probs[word] = math.log(smooth_count) - log_total probs['-OOV-'] = math.log(counts.smoother(0)) - log_total return probs def _read_senses(loc): lexicon = defaultdict(lambda: defaultdict(list)) if not loc.exists(): print("Warning: WordNet senses not found") return lexicon sense_names = dict((s, i) for i, s in enumerate(spacy.senses.STRINGS)) pos_ids = {'noun': NOUN, 'verb': VERB, 'adjective': ADJ} for line in codecs.open(str(loc), 'r', 'utf8'): sense_strings = line.split() word = sense_strings.pop(0) for sense in sense_strings: pos, sense = sense[3:].split('.') sense_name = '%s_%s' % (pos[0].upper(), sense.lower()) if sense_name != 'N_tops': sense_id = sense_names[sense_name] lexicon[word][pos_ids[pos]].append(sense_id) return lexicon def setup_vocab(src_dir, dst_dir): if not dst_dir.exists(): dst_dir.mkdir() vectors_src = src_dir / 'vectors.tgz' if vectors_src.exists(): write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin')) else: print("Warning: Word vectors file not found") vocab = Vocab(data_dir=None, get_lex_props=get_lex_props) clusters = _read_clusters(src_dir / 'clusters.txt') probs = _read_probs(src_dir / 'words.sgt.prob') if not probs: probs = _read_freqs(src_dir / 'freqs.txt') if not probs: min_prob = 0.0 else: min_prob = min(probs.values()) for word in clusters: if word not in probs: probs[word] = min_prob lexicon = [] for word, prob in reversed(sorted(list(probs.items()), key=lambda item: item[1])): entry = get_lex_props(word) if word in clusters: entry['prob'] = float(prob) cluster = clusters.get(word, '0') # Decode as a little-endian string, so that we can do & 15 to get # the first 4 bits. See _parse_features.pyx entry['cluster'] = int(cluster[::-1], 2) vocab[word] = entry vocab.dump(str(dst_dir / 'lexemes.bin')) vocab.strings.dump(str(dst_dir / 'strings.txt')) def main(lang_data_dir, corpora_dir, model_dir): model_dir = Path(model_dir) lang_data_dir = Path(lang_data_dir) corpora_dir = Path(corpora_dir) assert corpora_dir.exists() assert lang_data_dir.exists() if not model_dir.exists(): model_dir.mkdir() setup_tokenizer(lang_data_dir, model_dir / 'tokenizer') setup_vocab(corpora_dir, model_dir / 'vocab') if not (model_dir / 'wordnet').exists(): copytree(str(corpora_dir / 'wordnet' / 'dict'), str(model_dir / 'wordnet')) if __name__ == '__main__': plac.call(main)